K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2023

\(x^4-y^4=\left(x^2\right)^2-\left(y^2\right)^2=\left(x^2+y^2\right)\left(x^2-y^2\right)=\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)\)

7 tháng 7 2018

\(a.9a^2-25b^4=\left(3a\right)^2-\left(5b^2\right)^2=\left(3a-5b^2\right)\left(3a+5b^2\right)\)

\(b.\left(2x+y\right)^2-1=\left(2x+y-1\right)\left(2x+y+1\right)\)

\(c.\left(x+y+z\right)^2-\left(x-y-z\right)^2=\left[\left(x+y+z\right)+\left(x-y-z\right)\right]\left[\left(x+y+z\right)\right]-\left(x-y-z\right)\\ =2x.\left(2y+2z\right)\)

7 tháng 7 2018

a) \(9a^2-25b^4=\left(3a\right)^2-\left(5b^2\right)^2=\left(3a-5b^2\right)\left(3a+5b^2\right)\)

b) \(\left(2x+y\right)^2-1=\left(2x+y\right)^2-1^2=\left(2x+y+1\right)\left(2x+y-1\right)\)

c) \(\left(x+y+z\right)^2-\left(x-y-z\right)^2=\left(x+y+z+x-y-z\right)\left(x+y+z-x+y+z\right)\)

                                                              \(=2x\left(2y+2z\right)\)

29 tháng 7 2017

Câu hỏi của Khánh Ngọc Cute - Toán lớp 8 | Học trực tuyến

25 tháng 6 2019

làm ơn giúp mình bài toán hình phần d với cảm ơn nhiều( hình lớp 7 đó)eoeo

6 tháng 9 2020

Làm bài 1 thôi !! Mấy bài kia tương tự . Tìm nhân tử chung ra .

a) \(m^2-n^2=\left(m-n\right)\left(m+n\right)\)

b) \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2=\left(x^2+x-1+x^2+2x+3\right)\left(x^2+x-1-x^2-2x-3\right)\)

\(=\left(2x^2+3x+2\right)\left(-x-4\right)\)

c) \(-16+\left(x-3\right)^2=\left(x-3+4\right)\left(x-3-4\right)=x\left(x-7\right)\)

d) \(64+16y+y^2=\left(y+8\right)\left(y+8\right)\)

18 tháng 8 2018

a, 2x + 4 = 2( x + 2)

b, 5x - 20 = 5x - 5.4 = 5(x - 4)

c, x^2 + x = x.x + x = x( x + 1)

d, 3x^2y + 6xy^2 = 3xy( x + 2y)

18 tháng 8 2018

mk làm 3 câu còn lại

m)   \(x^2+5x+6=\left(x+2\right)\left(x+3\right)\)

k)  \(x^2-16=\left(x-4\right)\left(x+4\right)\)

n)  \(x^2-y^2=\left(x-y\right).\left(x+y\right)\)

21 tháng 9 2016

a/ Giả sử \(x^4+2x^3+3x^2+ax+b=\left(x^2+cx+d\right)^2\)

\(\Leftrightarrow x^4+2x^3+3x^2+ax+b=x^4+c^2x^2+d^2+2x^3c+2xcd+2dx^2\)

\(\Leftrightarrow x^3\left(2-2c\right)+x^2\left(3-c^2-2d\right)+x\left(a-2cd\right)+\left(b-d^2\right)=0\)

Áp dụng hệ số bất định, ta có : 

\(\begin{cases}2-2c=0\\3-c^2-2d=0\\a-2cd=0\\b-d^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}a=2\\b=1\\c=1\\d=1\end{cases}\)

Vậy : \(x^4+2x^3+3x^2+2x+1=\left(x^2+x+1\right)^2\)

b/ Tương tự

 

21 tháng 9 2016

thank you bn nhiều 

1 tháng 8 2018

\(x^2y^2-u^4v^6\)

\(=\left(xy-u^2v^3\right)\left(xy+u^2v^3\right)\)

p/s: chúc bạn học tốt

1 tháng 8 2018

DỂ QUÁ!!!!!!!!!!!!!!!!!!!!!!!!

tui hk biết làm

15 tháng 7 2018

3) \(A=2017.2019=\left(2018+1\right)\left(2018-1\right)=2018^2-1\)

\(\Rightarrow A< B\)

15 tháng 7 2018

Bài 1:

a)  \(x^2+2y^2+2xy-2y+2=0\)

\(\Leftrightarrow\)\(\left(x+y\right)^2+\left(y-1\right)^2+1=0\)

Ta thấy  \(VT>0\)

suy ra phương trình vô nghiệm

b)  \(x^2+y^2-4x+4=0\)

\(\Leftrightarrow\)\( \left(x-2\right)^2+y^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x-2=0\\y=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\y=0\end{cases}}\)

Vậy...

Bài 2:

a)  \(8y^3-125x^3=\left(2y-5x\right)\left(4y^2+10xy+25y^2\right)\)

b)  \(a^6-b^6=\left(a^3-b^3\right)\left(a^3+b^3\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)\)

c)  \(x^4-1=\left(x^2-1\right)\left(x^2+1\right)=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)

Bài 3:

\(A=2017.2019=\left(2018-1\right)\left(2018+1\right)=2018^2-1< 2018^2=B\)

Vậy  \(A< B\)

21 tháng 7 2019

a) \(27x^3+8^3\)

\(=\left(3x\right)^3+2^3\)

\(=\left(3x+2\right)\left[\left(3x\right)^2+6x+2^2\right]\)

\(=\left(3x+2\right)\left(9x^2-6x+4\right)\)

b) \(8x^3-y^3\)

\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

c) \(x^2+4xy+4y^2\)

\(=\left(x+2y\right)^2\)

\(27x^3+8\)

\(=\left(3x\right)^3+2^3\)

\(=\left(3x+2\right)\left(9x^2-6x+4\right)\)

\(8x^3-y^3\)

\(=\left(2x\right)^3-y^3\)

\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(x^2+4xy+4y^2\)

\(=x^2+2.x.2y+\left(2y\right)^2\)

\(=\left(x+2y\right)^2\)

_Minh ngụy_