Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (x+2)^2
b, (x-3)^2
c, (2x+3)^2
d, (3x-1)^2
e, (x+5)^2
g, (4x-1)^2
a) x2 + 4x + 4 = ( x + 2 )2
b) x2 - 6x + 9 = (x-3)2
c) 4x2 + 12x + 9 = (2x)2 + 2.2x.3 + 3^2 = (2x + 3)2
d) 9x2 - 6x + 1 = (3x)2 - 2.3x.1 + 1^2 = (3x-1)2
e) x2 + 25 +10x = x2 + 2.x.5 + 52 = (x+5)2
g) 16x2 +1 - 8x = (4x)2 - 2.4x.1 + 1^2 = (4x-1)2
a , \(16x^2+8x+1=\left(4x\right)^2+2.4x.1+1^2=\left(4x+1\right)^2\)
b , \(x^2-x+\dfrac{1}{4}=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x-\dfrac{1}{2}\right)^2\)
a,(4x+1)2 e,\(\left(\dfrac{3}{2}x-\dfrac{2}{5}\right)^2\)
b,(x-\(\dfrac{1}{2}\))2 g,\(\left(xy+1\right)^2\)
c,(\(x+\dfrac{3}{2}\))2 h,\(\left(x+5\right)^2\)
d,\(\left(x-\dfrac{5}{4}\right)^2\) i,\(-\left(x-6\right)^2\)
k,\(-\left(2x+3\right)^2\)
1) \(4x^2+4x+1=\left(2x+1\right)^2\)
2)\(9x^2-24xy+16y^2=\left(3x-4y\right)^2\)
3)\(-x^2+10x-25=-\left(x-5\right)^2\)
4)\(1+12x+36x^2=\left(1+6x\right)^2\)
5) \(\dfrac{x^2}{4}+2xy+4y^2=\left(\dfrac{x}{2}+2y\right)^2\)
6) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
1) \(4x^2-12x+y^2-4y+13\)
\(=\left(4x^2-12x+9\right)+\left(y^2-4y+4\right)\)
\(=\left[\left(2x\right)^2-2.2x.3+3^2\right]+\left(y^2-2.2y+4\right)\)
\(=\left(2x-3\right)^2+\left(y-2\right)^2\)
2) \(x^2+y^2+2y-6x+10\)
\(=\left(x^2+2y+1\right)+\left(y^2-6x+9\right)\)
\(=\left(x+1\right)^2+\left(y-3\right)^2\)
3) \(4x^2+9y^2-4x+6y+2\)
\(=\left(4x^2-4x+1\right)+\left(9y^2+6y+1\right)\)
\(=\left(2x-1\right)^2+\left(3y+1\right)^2\)
4) \(y^2+2y+5-12x+9x^2\)
\(\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)\)
\(=\left(y+1\right)^2+\left(3x-2\right)^2\)
5) \(x^2+26+6y+9y^2-10x\)
\(=\left(x^2-10x+25\right)+\left(9y^2+6y+1\right)\)
\(=\left(x-5\right)^2+\left(3y+1\right)^2\)
Bài 1:
a) \(\dfrac{15xy}{10x^2y}\)
= \(\dfrac{3.5xy}{2.5xyx}\)
= \(\dfrac{3}{2x}\)
d) \(\dfrac{6x\left(x+5\right)^3}{2x^2\left(x+5\right)}\)
= \(\dfrac{3.2x\left(x+5\right)\left(x+5\right)^2}{x.2x\left(x+5\right)}\)
= \(\dfrac{3\left(x+5\right)^2}{x}\)
đề là gì bạn có phải như mình làm ko
\(x^2+6x+9=\left(x+3\right)^2\)
\(x^2+8x+16=\left(x+4\right)^2\)
\(x^2+10x+25=\left(x+5\right)^2\)
\(x^2-12+36=\left(x-6\right)^2\)
\(x^2-14x+49=\left(x-7\right)^2\)
a)\(a^4+a^2+1=\left(a^2\right)^2+2a^2.1+1^2-a^2=\left(a^2+1\right)^2-a^2=\left(a^2+1+a\right)\left(a^2+1-a\right)\)
b)\(a^4+a^2-2=a^4-a^2+2a^2-2=a^2\left(a^2-1\right)+2\left(a^2-1\right)=\left(a^2+2\right)\left(a^2-1\right)\)
c)\(x^4+4x^2-5=x^4-x^2+5x^2-5=x^2\left(x^2-1\right)+5\left(x^2-1\right)=\left(x^2+5\right)\left(x+1\right)\left(x-1\right)\)
d)\(\left(x+2\right)\left(x^2-2x-6\right)=x^3-2x^2-6x+2x^2-4x-12=x^3-10x-12\)
\(\Rightarrow x^3-10x-12=\left(x+2\right)\left(x^2-2x-6\right)\)
e)\(6x^3-17x^2+14x-3\)
Ta có: \(\left(ax^2+bx+c\right)\left(dx+e\right)\)
\(=adx^3+aex^2+bdx^2+bex+cdx+ce\)
\(=adx^3+\left(ae+bd\right)x^2+\left(be+cd\right)x+ce\)
Do đó:\(\left\{{}\begin{matrix}ad=6\\ae+bd=-17\\be+cd=14\\ce=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3;b=-4\\c=1;d=2\\e=-3\end{matrix}\right.\)
Suy ra: \(6x^3-17x^2+14x-3=\left(3x^2-4x+1\right)\left(2x-3\right)\)
h)\(x^4-34x^2+225=x^4-15x^2-15x^2+225-4x^2=x^2\left(x^2-15\right)-15\left(x^2-15\right)-\left(2x\right)^2=\left(x^2-15\right)^2-\left(2x\right)^2=\left(x^2+2x-15\right)\left(x^2-2x-15\right)=\left(x^2-3x+5x-15\right)\left(x^2+5x-3x-15\right)=\left[\left(x-3\right)\left(x+5\right)\right]^2\)
a) \(A=x^2-2x-6\)
\(A=\left(x^2-2x+1\right)-7\)
\(A=\left(x-1\right)^2-7\)
Mà \(\left(x-1\right)^2\) luôn \(\ge\)\(0\) => GTNN của biểu thức là -7 với \(\left(x-1\right)^2=0\) tức x=1
a: \(=x^2-2x+1-7=\left(x-1\right)^2-7>=-7\)
Dấu '=' xảy ra khi x=1
b: \(=4x^2-4x+1+6=\left(2x-1\right)^2+6>=6\)
Dấu '=' xảy ra khi x=1/2
c: \(=9x^2-6x+1-1=\left(3x-1\right)^2-1>=-1\)
Dấu '=' xảy ra khi x=1/3
d: \(=x^2+12x+36-36=\left(x+6\right)^2-36>=-36\)
Dấu '=' xảy ra khi x=-6
e: \(=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}>=-\dfrac{9}{4}\)
Dấu '=' xảy ra khi x=3/2
a, \(x^2+10x+25=x^2+5x+5x+25\)
\(=\left(x+5\right)^2\)
b, \(x^2-12x+36=x^2-6x-6x+36\)
\(=\left(x-6\right)^2\)
c, \(9x^2+4+12x=9x^2+6x+6x+4\)
\(=3x\left(3x+2\right)+2\left(3x+2\right)=\left(3x+2\right)^2\)
d, \(x^2+49-14x=x^2-7x-7x+49\)
\(=\left(x-7\right)^2\)
e, \(9x^4+24x^2+16=9x^4+12x^2+12x^2+16\)
\(=3x^2\left(3x^2+4\right)+4\left(3x^2+4\right)=\left(3x^2+4\right)^2\)
g,\(4x^2-12xy+9y^2=4x^2-6xy-6xy+9y^2\)
\(=2x\left(2x-3y\right)-3y\left(2x-3y\right)=\left(2x-3y\right)^2\)
Chúc bạn học tốt!!!