K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(3+xy^2\right)^2=9+6xy^2+x^2y^4\)

29 tháng 6 2018

hẳng đằng thức số 1 bạn ạ 

3 tháng 7 2018

\(x^2+\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)

\(=x^2+x^2+1+3x^2+4+4x^2+9\)

\(=x^2+x^2+1+3x^2+3+4x^2+9+1\)

\(=2x^2+1+3x^2+3+4x^2+9+1\)

Từ đây ghép x vào rồi tính nốt đẳng thức thôi nhé

18 tháng 5 2019

1.a) xy + 2y - x2 + 4

= y ( x + 2 ) - ( x2 - 4 ) = y ( x + 2 ) - ( x - 2 ) ( x + 2 ) = ( x + 2 )( y - x + 2 )

b) 2x2 + y2 + 3xy

= ( 2x2 + 2xy ) + ( y2 + xy )

= 2x ( x + y ) + y ( x + y )

= ( x + y ) ( 2x + y )

2.

x - y = 5 \(\Rightarrow\)( x - y )2 = 25 \(\Rightarrow\)x2 + y2 = 25 + 2xy = 25 + 2.3 = 31

A = ( x + y )2 = x2 + y2 + 2xy = 31 + 6 = 37

29 tháng 8 2020

( a2 - 2a + 3 )( a2 + 2a - 3 )

= [ a2 - ( 2a - 3 ) ][ a2 + ( 2a - 3 ) ]

= ( a2 )2 - ( 2a - 3 )2

= a4 - ( 4a2 -  12a + 9 )

= a4 - 4a2 + 12a - 9 

29 tháng 8 2020

\(\left(a^2-2a+3\right)\left(a^2+2a-3\right)\)

\(=a^4+2a^3-3a^2-2a^3-4a^2+6a+3a^2+6a-9\)

\(=a^4-4a^2+12a-9\)

11 tháng 9 2021

\(1,\\ a,=\left(x+2\right)\left(x^2-2x+4\right)\\ b,=\left(x-4\right)\left(x^2+8x+16\right)\\ c,=\left(3x+1\right)\left(9x^2-3x+1\right)\\ d,=\left(4m-3\right)\left(16m^2+12m+9\right)\\ 2,\\ a,=x^3+125\\ b,=1-x^3\\ c,=y^3+27t^3\)

11 tháng 9 2021

a)
\(=\left(x+2\right)\left(x^2-2x+4\right)\)
b)
\(=\left(x-4\right)\left(x^2+4x+16\right)\)
c)=\(\left(3x+1\right)\left(9x^2-3x+1\right)\)
d)
=\(\left(4m-3\right)\left(16m^2+12m+9\right)\)

20 tháng 9 2021

\(a.=\left(2x\right)^2-2.2x.2y+\left(2y\right)^2=\left(2x-2y\right)^2\)

\(b.=\left(3x\right)^2-2.3x.2+2^2=\left(3x-2\right)^2\)

20 tháng 9 2021

a. 4x2+4y2-8xy=(2x)2+(2y)2-8xy

                        =(2x-2y)2

b.9x2-12x+4=(3x)2-12x+22

                    =(3x-2)2

c.xy2+1/4x2y4+1=xy2+(1/2xy2)2+1

                          =(1/2xy2+2)2

a) Áp dụng hằng đẳng thức : \(a^2-b^2+\left(a-b\right)\left(a+b\right)\)

Ta có ; \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)

\(=\left[\left(a^2+2a\right)+3\right]\left[\left(a^2+2a\right)-3\right]\)

\(=\left(a^2+2a\right)^2-3^2\)

\(=\left(a^2+2a\right)^2-9\)