Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(x-2)(x2+2x+4)-19=0
\(\Rightarrow\)x3-8-19=0
\(\Rightarrow\)x3-27=0
\(\Rightarrow\)(x-3)(x2+3x+9)=0
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0+3\\x^2+3x=0-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x^2+3x=-9\end{matrix}\right.\)
(6x-1)(6x+1)-15=0
\(\Rightarrow\)36x2-1-15=0
\(\Rightarrow\)36x2-16=0
Bài 62: 25x2y6-60xy4z2+36y2z4=(5xy3)2-2.5xy3.(6yz2)2
Bài 63: 1/9u4v6-1/3u5v4+(1/2u3v)=(1/3u2v3)-2.1/3u2v3.1/2u2v3+(1/2u3v)
Làm bài 1 thôi !! Mấy bài kia tương tự . Tìm nhân tử chung ra .
a) \(m^2-n^2=\left(m-n\right)\left(m+n\right)\)
b) \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2=\left(x^2+x-1+x^2+2x+3\right)\left(x^2+x-1-x^2-2x-3\right)\)
\(=\left(2x^2+3x+2\right)\left(-x-4\right)\)
c) \(-16+\left(x-3\right)^2=\left(x-3+4\right)\left(x-3-4\right)=x\left(x-7\right)\)
d) \(64+16y+y^2=\left(y+8\right)\left(y+8\right)\)
Bài 1:
\(B=\dfrac{1}{9}x^2-2x+9\)
\(=\left(\dfrac{1}{3}x\right)^2-2\cdot\dfrac{1}{3}x\cdot3+3^2=\left(\dfrac{1}{2}x-3\right)^2\)
\(C=x^3-9x^2+27x-27=\left(x-3\right)^3\)
\(D=27x^3+27x^2+9x+1=\left(3x+1\right)^3\)
\(E=\left(x-2y\right)^3\)
Ta có công thức :
\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(\Rightarrow m^2-n^2=\left(m-n\right)\left(m+n\right)\)
9/16x2m-2y2 - 2xmym + 16/9x2y2m-2
=\(\left(\dfrac{3}{4}x^{m-1}y\right)^2\) - 2xmym + \(\left(\dfrac{4}{3}xy^{m-1}\right)^2\)
=> \(\left(\dfrac{3}{4}x^{m-1}y-\dfrac{4}{3}xy^{m-1}\right)^2\)