K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2023

4x²y⁴ - 4xy³ + y²

= (2xy²)² - 2.2xy².y + y²

= (2xy² - y)²

------------

Sửa đề:

(x - 2y)² - 4(x - 2y) + 4

= (x - 2y)² - 2.(x - 2y).2 + 2²

= (x - 2y - 2)²

------------

25x² - 5xy + 1/4 y²

= (5x)² - 2.5xy.y/2 + (y/2)²

= (5x - y/2)²

5 tháng 10 2023

\(4x^2y^4-4xy^3+y^2\)

\(=\left(2xy^2\right)^2-2\cdot2xy^2\cdot y+y^2\)

\(=\left(2xy^2-y\right)^2\)

_____
\(\left(x-2y\right)^2-4\left(x-2y\right)+4\)

\(=\left(x-2y\right)^2-2\cdot\left(x-2y\right)\cdot2+2^2\)

\(=\left[\left(x-2y\right)-2\right]^2\)

\(=\left(x-2y-2\right)^2\)

____

\(25x^2-5xy+\dfrac{1}{4}y^2\)

\(=\left(5x\right)^2-2\cdot\dfrac{5}{2}xy+\left(\dfrac{1}{2}y\right)^2\)

\(=\left(5x\right)^2-2\cdot\dfrac{1}{2}y\cdot5x+\left(\dfrac{1}{2}y\right)^2\)

\(=\left(5x-\dfrac{1}{2}y\right)^2\)

3 tháng 9 2016

1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2

b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2

c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2

3 tháng 9 2016

2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16

= x2 + 2xy + y2 + 42 = (x + y)2 + 42

b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36

= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2

c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9

= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2

d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2

= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2

10 tháng 9 2016

Bài 1:

b) \(16x^2-8x+1=\left(4x-1\right)^2\)

c) \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)

\(=\left[\left(x+3\right)\left(x+6\right)\right]\left[\left(x+4\right)\left(x+5\right)\right]+1\)

\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)

Đật \(x^2+9x+19=t\) , pt trở thành

\(\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+9x+19\right)^2\)

d) \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)

\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)

\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)

\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)

e) \(x^2-2x\left(y+2\right)+y^2+4y+4\)

\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)

\(=\left[x-\left(y+2\right)\right]^2=\left(x-y-2\right)^2\)

a)_ Sai đề

 

 

10 tháng 9 2016

N = (x2 - 4x - 5)(x2 - 4x - 19) + 49

Đặt x2 - 4x - 5 = t, ta có:

t(t - 14) + 49

t2 - 14t + 49

= (t - 7)2

= (x- 4x - 12)2

= (x2 - 6x + 2x - 12)2

= [x(x - 6) + 2(x - 6)]2

= [(x + 2)(x - 6)]2

[(x + 2)(x - 6)]2 lớn hơn hoặc bằng 0

Vậy Min N = 0 khi x = - 2 hoặc x = 6.

T = x2 - 6x + y2 - 2y + 12

= x2 - 2 . x . 3 + 9 + y2 - 2 . y . 1 + 1 + 2

= (x - 3)2 + (y - 1)2 + 2

(x - 3)2 lớn hơn hoặc bằng 0

(y - 1) lớn hơn hoặc bằng 0

(x - 3)2 + (y - 1)2 + 2 lớn hơn hoặc bằng 2

Vậy Min T = 2 khi x = 3 và y = 1.

Chúc bạn học tốt ^^

 

10 tháng 7 2015

b)(y-2)^3=y^3-8+12y-6y^2

c)8x^3+y^3=(2x+y)(4x^2+y^2-4xy)

2)

=(xy+2/3)^2

10 tháng 5 2021

a, \(25x^2+5xy+\frac{1}{4}y^2=\left(5x\right)^2+2.5x.\frac{1}{2}y+\left(\frac{1}{2}y\right)^2\)

\(=\left(5x+\frac{1}{2}y\right)^2\)

b, \(9x^2+12x+4=\left(3x\right)^2+2.3x.2+2^2=\left(3x+2\right)^2\)

c, \(x^2-6x+5-y^2-4y=\left(x^2-6x+9\right)-\left(y^2+4y+4\right)\)

\(=\left(x-3\right)^2-\left(y+2\right)^2=\left(x-y-5\right)\left(x+y-1\right)\)

d, \(\left(2x-y\right)^2+4\left(x+y\right)^2-4\left(2x-y\right)\left(x+y\right)\)

\(=\left(2x-y\right)^2-2\left(2x-y\right)\left(2x+2y\right)+\left(2x+2y\right)^2\)

\(=\left(2x-y+2x+2y\right)^2=\left(4x+y\right)^2\)

3 tháng 9 2023

Có cái cc

25 tháng 8 2018

Câu a : \(4x^2+4xy+y^2=\left(2x+y\right)^2\)

Câu b : \(9m^2+n^2-6mn=\left(3m-n\right)^2\)

Câu c : \(16a^2+25b^2+40ab=\left(4a+5b\right)^2\)

Câu d : \(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)

25 tháng 8 2018

\(a,4x^2+4xy+y^2=\left(2x\right)^2+4xy+y^2=\left(2x+y\right)^2\)

\(b,9m^2+n^2-6mn=\left(3m\right)^2-6mn+n^2=\left(3m-n\right)^2\)

\(c,16a^2+25b^2+40ab=\left(4a\right)^2+40ab+\left(5b\right)^2=\left(4a+5b\right)^2\)

@Yukru ơi! giúp câu D với!

Chúc bạn học tốt!ok

1 tháng 11 2018

a/ (y+1)2

b/ (3x-y)2

c/ (5a+2b)2

d/ (x-1/2)2

23 tháng 7 2018

\(a,\left(x+2y\right)^2=x^2+4xy+4y^2\)

\(b,\left(3x-2y\right)^2=9x^2-12xy+4y^2\)

\(c,\left(2x-\dfrac{1}{2}\right)^3=8x^3-3.4x^2.\dfrac{1}{2}+3.2x.\dfrac{1}{4}-\dfrac{1}{8}=8x^3-6x^2+\dfrac{3}{2}x-\dfrac{1}{8}\)

\(d,\left(\dfrac{x}{2}-y\right)\left(\dfrac{x}{2}+y\right)=\dfrac{x^2}{4}-y^2\)

\(2;a,x^4+4x^2+4\)

\(=\left(x^2+2\right)^2\)

\(b,4a^2b^2-c^2d^2\)

\(=\left(2ab\right)^2-\left(cd\right)^2\)

\(=\left(2ab-cd\right)\left(2ab+cd\right)\)

15 tháng 6 2019

Bài 1 : \(a,\)\(16u^2v^4-8uv^2+1\)

\(=\left(4uv^2\right)^2-2.4uv^2.1+1^2\)

\(=\left(4uv^2-1\right)^2\)

\(b,\)\(4x^2-12x+4\)

\(\left(2x\right)^2-2.2x.3+3^2-5\)

\(=\left(2x-3\right)^2-\left(\sqrt{5}\right)^2\)

\(=\left(2x-3-\sqrt{5}\right)\left(2x-3+\sqrt{5}\right)\)

15 tháng 6 2019

Bài 2 :

\(\left(x+1-2y\right)^2\)

\(=\left[\left(x-1\right)-2y\right]^2\)

\(=\left(x-1\right)^2-2\left(x-1\right).2y+\left(2y\right)^2\)

\(=x^2-2x+1-4xy+4y+4y^2\)

Bài 3  :   ( Đề nhầm tí nha , coi lại nhé )

\(x^2+y^2=\left(x+y\right)^2-2xy\)

\(\Rightarrow x^2+y^2=x^2+2xy+y^2\)

\(\Rightarrow x^2+y^2=x^2+y^2\) ( luôn đúng với \(\forall x\))

\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\)\(\left(đpcm\right)\)

23 tháng 7 2018

a ) \(\left(5x+2y\right)^2=25x^2+20xy+4y^2\)

b ) \(\left(-3x+2\right)^2=9x^2-12x+4\)

c ) \(\left(\dfrac{2}{3}x+\dfrac{1}{3}y\right)^2=\dfrac{4}{9}x^2+\dfrac{4}{9}xy+\dfrac{1}{9}y^2\)

d ) \(\left(2x-\dfrac{5}{2}y\right)^2=4x^2-10xy+\dfrac{25}{4}y^2\)

e ) \(\left(x+\dfrac{4}{3}y^2\right)^2=x^2+\dfrac{8}{3}xy^2+\dfrac{16}{9}y^4\)

f ) \(\left(2x^2+\dfrac{5}{3}y\right)^2=4x^4+\dfrac{20}{3}x^2y+\dfrac{25}{9}y^2\)