Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=|x+2|-|x-3|≤ | x+2-(x-3)|
Vì | x+2-(x-3)|
=> | x+2-x+3| = | (x-x)+(2+3)|=| 5|=5
vậy GTNN của A = 5
A = | x + 2 | + | x - 3 |
= | x + 2 | + | 3 - x | ≥ | x + 2 + 3 - x | = 5 ∀ x
Dấu "=" xảy ra <=> ( x + 2 )( 3 - x ) ≥ 0 <=> -2 ≤ x ≤ 3
Vậy MinA = 5 <=> -2 ≤ x ≤ 3
\(a,P=\left(x-a\right)\left(x-b\right)\left(x-c\right)\)
\(=(x^2-ax-bx+ac)\left(x-c\right)\)
\(=x^3-cx^2-ax^2+cax-bx^2+bcx+abx-abc\)
\(=x^3-x^2\left(a+b+c\right)+x\left(ab+bc+ca\right)-abc\)
\(=x^3-12x^2+47x-60\)
\(b,\) Ta có \(\left(x-4\right)^3=x^3-12x^2+48x-64\)
\(\Rightarrow P=\left(x-4\right)^3-\left(x+4\right)\)
Đặt \(t=x-4\)
\(\Rightarrow P=t^3-t\)
\(\Rightarrow P=t\left(t-1\right)\left(t+1\right)\)
\(\Rightarrow P=\left(x-4\right)\left(x-3\right)\left(x-5\right)\)
\(\left|x\right|=3\Rightarrow x=\orbr{\begin{cases}3\\-3\end{cases}}\)
Với \(x=3\Rightarrow P=0\)
Với \(x=-3\Rightarrow P=-336\)
P= (x-a)(x-b)(x-c)
=(x2-ax-bx+ab)(x-c)
=x3-cx2-ax2+acx-bx2+bcx+abx-abc
=x3-(a+b+c)x2+(ab+bc+ca)x-abc
=x3-12x2+47x-60
b) Ta có: (x-4)3=x3-12x2+48x-64
=> P=(x-4)3-(x+4)
Đặt t=x-4
P=t3-t
=t(t2-1)
=t(t+1)(t-1)
=(x-4)(x-3)(x-5)
\(\left|x\right|=3\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Với x=3 thì
P=\(\left(3-4\right)\left(3-3\right)\left(3-5\right)=0\)
Với x=-3 thì
\(P=\left(-3-4\right)\left(-3-3\right)\left(-3-5\right)=-336\)
a) \(A=\frac{\left(2x\right)^2-\left(2x\right)+7}{\left(2x\right)-1}=\frac{\left(2x\right)\left(2x-1\right)+7}{\left(2x-1\right)}=2x+\frac{7}{\left(2x-1\right)}\)dk x khac 1/2
b) 2x-1=U(7)=> x={-3,0,1,4)
a) \(\left|x-5\right|=x-5\)
Ta có: \(VT\ge0\Rightarrow x-5\ge0\)
\(\Rightarrow\left|x-5\right|=x-5\)
Phương trình trở thành \(x-5=x-5\)(đúng)
Vậy \(x\ge0\)
b) Xét khoảng \(x< 2\)
PTTT: \(\left(2-x\right)+\left(3-x\right)=x\Leftrightarrow5=3x\)
\(\Leftrightarrow x=\frac{5}{3}\)(tm)
Xét khoảng \(2\le x\le3\)
PTTT: \(\left(x-2\right)+\left(3-x\right)=x\Leftrightarrow x=1\)(L)
Xét khoảng x > 3
PTTT: \(\left(x-2\right)+\left(x-3\right)=x\Leftrightarrow x=5\left(tm\right)\)(tm)
Vậy tập nghiệm của phương trình là \(S=\left\{5;\frac{5}{3}\right\}\)
Thay x = 2 vào A, ta có:
\(A=\left(2\times2^2-3\times2-5\right)\left(2^2-3\right)=\left(8-6-5\right)\left(4-3\right)=-3\)
Vậy tại x = 2, giá trị của biểu thức A là -3
Đề bài bạn viết hơi khó hiểu, nhưng có thể tạm giải như sau:
Lời giải:
$A=\frac{4x^2}{x+1}=\frac{4(x^2-1)+4}{x+1}=\frac{4(x-1)(x+1)+4}{x+1}$
$=4(x-1)+\frac{4}{x+1}$
Với $x$ nguyên thì:
$A\in\mathbb{Z}\Leftrightarrow 4(x-1)+\frac{4}{x+1}\in\mathbb{Z}$
$\Leftrightarrow \frac{4}{x+1}\in\mathbb{Z}$
$\Leftrightarrow x+1$ là ước của $4$
$\Rightarrow x+1\in\left\{\pm 1;\pm 2;\pm 4\right\}$
$\Rightarrow x\in\left\{-2; 0; -3; 1; 3; -5\right\}$