Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^{-\frac{2}{3}}+x^{\frac{3}{4}}\right)^{17}=\sum\limits^{17}_{k=0}C_{17}^k\left(x^{-\frac{2}{3}}\right)^k\left(x^{\frac{3}{4}}\right)^{17-k}=\sum\limits^{17}_{k=0}C_{17}^kx^{\frac{51}{4}-\frac{17}{12}k}\)
Số hạng thứ 13 \(\Rightarrow k=12\) là: \(C_{17}^{12}x^{-\frac{17}{4}}\)
b/ Xét khai triển:
\(\left(3-x\right)^n=C_n^03^n+C_n^13^{n-1}\left(-x\right)^1+C_n^23^{n-2}\left(-x\right)^2+...+C_n^n\left(-x\right)^n\)
Cho \(x=1\) ta được:
\(2^n=3^nC_n^0-3^{n-1}C_n^1+3^{n-2}C_n^2+...+\left(-1\right)^nC_n^n\)
À, đến đây mới thấy đề thiếu, biết rằng cái kia làm sao hả bạn?
a/ \(\left(3^{\frac{1}{2}}+7^{\frac{1}{3}}\right)^{128}=\sum\limits^{128}_{k=0}C_{128}^k3^{\frac{k}{2}}.7^{\frac{128-k}{3}}\)
Do \(\left(3;7\right)=1\) nên để hạng tử là nguyên khi và chỉ khi:
\(\left\{{}\begin{matrix}\frac{k}{2}\in Z\\\frac{128-k}{3}\in Z\\0\le k\le128\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{k}{2}\in Z\\\frac{k+1}{3}\in Z\\0\le k\le128\end{matrix}\right.\) \(\Rightarrow k=6n+2\) (\(n\in N\))
\(0\le k\le128\Rightarrow0\le6n+2\le128\)
\(\Rightarrow0\le n\le21\Rightarrow\) có 22 hạng tử là số nguyên
b/\(\left(3^{\frac{1}{2}}+2^{\frac{3}{4}}\right)^{124}=\sum\limits^{124}_{k=0}C_{124}^k3^{\frac{k}{2}}2^{93-\frac{3k}{4}}\)
Hạng tử là nguyên khi và chỉ khi:
\(\left\{{}\begin{matrix}\frac{k}{2}\in Z\\\frac{3k}{4}\in Z\\0\le k\le124\end{matrix}\right.\) \(\Rightarrow k=4n\) với \(n\in N\)
\(\Rightarrow0\le4n\le124\Rightarrow0\le n\le31\)
Có 32 hạng tử nguyên
a)
\(u_1=10^{1-2.1}=10^{-1};u_2=10^{1-2.2}=10^{-3}\);
\(u_3=10^{1-2.3}=10^{-5}\); \(u_4=10^{1-2.4}=10^{-7}\);
\(u_5=10^{1-2.5}=10^{-9}\).
Xét \(\dfrac{u_n}{u_{n-1}}=\dfrac{10^{1-2n}}{10^{1-2\left(n-1\right)}}=\dfrac{10^{1-2n}}{10^{3-2n}}=10^{-2}=\dfrac{1}{100}\).
Suy ra: \(u_n=\dfrac{1}{100}u_{n-1}\) và dễ thấy \(\left(u_n\right)>0,\forall n\in N^{\circledast}\) nên \(u_n< u_{n-1},\forall n\ge2\).
Vậy \(\left(u_n\right)\) là dãy số tăng.
b) \(u_1=3^1-7=-4\); \(u_2=3^2-7=2\); \(u_3=3^3-7=25\);
\(u_4=3^4-7=74\); \(u_5=3^5-7=236\).
\(u_n-u_{n-1}=3^n-7-\left(3^{n-1}-7\right)=3^n-3^{n-1}=2.3^{n-1}\)\(\left(n\ge2\right)\).
Với \(n\ge2\) thì \(2.3^{n-1}>0\) nên \(u_n>u_{n-1}\).
Vậy \(\left(u_n\right)\) là dãy số tăng.
a/ \(\frac{A^4_n}{A_{n+1}^3-C_n^{n-4}}=\frac{24}{23}\Rightarrow n=5\)
Khai triển \(\left(2-3x^2+x^3\right)^5\)
\(\left\{{}\begin{matrix}k_0+k_2+k_3=5\\2k_2+3k_3=9\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_2;k_3\right)=\left(1;3;1\right);\left(2;0;3\right)\)
Hệ số của số hạng chứa \(x^9\):
\(\frac{5!}{1!.3!.1!}.2^1.\left(-3\right)^3+\frac{5!}{2!.3!}.2^2.\left(-3\right)^0=-1040\)
b/ SHTQ của khai triển: \(\left(1+2x\right)^n\) là: \(C_n^k2^kx^k\)
\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển tổng quát là \(C_n^32^3\)
\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển của \(f\left(x\right)\): \(2^3.\sum\limits^{22}_{n=3}C_n^3\)
Tính tổng \(C_3^3+C_4^3+C_5^3+...+C_{22}^3\)
\(=C_4^4+C_4^3+C_5^3+...+C_{22}^3\)
\(=C_5^4+C_5^3+...+C_{22}^3\)
\(=C_6^4+C_6^3+...+C_{22}^3=...=C_{23}^4\)
Vậy \(2^3\sum\limits^{22}_{n=3}C_n^3=2^3.C_{23}^4\)
Bài 2:
a: \(=\dfrac{7}{9}\left(\dfrac{7}{6}-\dfrac{19}{20}-\dfrac{1}{15}\right)+\dfrac{22}{5}\cdot\dfrac{1}{24}\)
\(=\dfrac{7}{9}\cdot\dfrac{3}{20}+\dfrac{22}{120}=\dfrac{7}{60}+\dfrac{11}{60}=\dfrac{18}{60}=\dfrac{3}{10}\)
b: \(=\left(\dfrac{35-32}{60}\right)^2+\dfrac{4}{5}\cdot\dfrac{70-45}{80}\)
\(=\dfrac{1}{400}+\dfrac{4\cdot25}{400}=\dfrac{101}{400}\)
Đáp án B