Vị trí của nitơ (N) trong bảng hệ thống tuần hoàn là:

A. ô 14, chu kỳ 2,...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2019

Đáp án A

+ Trong bảng tuần hoàn các nguyên tố hóa học, nguyên tố thuộc chu kì 3, nhóm IIIA là Al.

+ Cu thuộc chu kỳ 4 nhóm IB; Ba thuộc chu kỳ 6 nhóm IIA; Zn thuộc chu kỳ 4 nhóm IIB.

18 tháng 12 2018

Chu kì 2 có 8 nguyên tố, chu kì 6 có 18 nguyên tố

=> Đáp án B

20 tháng 11 2017

Chọn C.

Vì số proton trong Y lớn hơn trong X 8 hạt nên ta tìm được X là N (Z = 7) và Y là P (Z= 15).

31 tháng 5 2019

Đáp án : C

Chu kỳ 3 => có 3 lớp e

Nhóm IIIA => 3 e lớp ngoài cùng và e cuối điền vào phân lớp p

=> 1s22s22p63s23p1

=> p =13

28 tháng 7 2015

Áp dụng ĐLBTKL:

mhh = mX + mY + mCO3 = 10 g; mA = mX + mY + mCl = 10 - mCO3 + mCl.

số mol CO3 = số mol CO2 = 0,03 mol.

Số mol Cl = 2 (số mol Cl2 = số mol CO3) (vì muối X2CO3 tạo ra XCl2, Y2CO3 tạo ra 2YCl3).

Do đó: mA = 10 - 60.0,03 + 71.0,03 = 10,33g.

8 tháng 3 2016

TH1: Cả 2 muối \(NaX\)    và \(NaY\)   đều pứ vs \(\text{AgNO3}\)

Gọi CT chung của 2 muối là \(NaZ\)
\(NaZ\)  + \(AgNO_3\) \(\rightarrow\)  \(NaNO_3\)       + \(AgZ\)
a mol.                                                  =>a mol
có a(108+Z) - a(23+Z) = 85a = 8,61 - 6,03 =2,58
=>a = 0,03=>m\(NaZ\) = 6,03 = a(23+Z) → Z = 178 =>loại
TH2: 2 muối của X và Y lần lượt là \(NaF\)  và \(NaCl\)
Mol \(AgCl\)  =8,61/143,5 = 0,06mol 
\(NaCl\)   +  \(AgNO_3\)   \(\rightarrow\) \(NaNO_3\)  + \(AgCl\)
0,06<=                                   0,06 
m\(NaCl\)  = 0,06.58,5=3,51g
m\(NaF\)   =6,03-3,51=2,52g 
%m\(NaF\)   = 2,52/6,03 .100% = 41,79% 
8 tháng 3 2016

Do AgF tan, khác các muối còn lại nên chia thành 2 trường hợp:
TH1: Hai muối ban đầu là NaF và NaCl —> nNaCl = nAgCl = 0,06 —> %NaF = 41,79%
TH2: Cả 2 muối đều tạo kết tủa:
m tăng = n muối (108 – 23) = 8,61 – 6,03 —> n muối = 0,03 —> M = 198,6 —> Halogen = M – 23 = 175,6: Vô nghiệm

17 tháng 12 2014

Thầy rất hoan nghênh bạn Thịnh đã trả lời câu hỏi 2, nhưng câu này em làm chưa đúng. Ở bài này các em cần phải vận dụng phương trình BET để tính diện tích bề mặt riêng:

Sr = (Vm/22,4).NA.So. Sau khi thay số các em sẽ ra được đáp số.

17 tháng 12 2014

E làm thế này đúng không ạ?

n(N2)=PV/RT=1*129*10^-3/(0.082*273)=5.76*10^-3 (mol)

Độ hấp phụ: S=n(N2)/m=5.76*10^-3/1=5.76*10^-3 (mol/g)

Diện tích bề mặt silicagel: S=N*So*J=6.023*10^23*16.2*10^-20*5.76*10^-3=562(m2/g)

5 tháng 4 2018

Chọn D.

28 tháng 3 2016

a) - 1s22s22p4                           ; Số electron hóa trị là 6.

   - 1s22s22p3                            ; Số electron hòa trị là 5.

   - 1s22s22p63s23p1                 ; Số electron hòa trị là 3.

   - 1s22s22p63s23p5                 ; Số electron hòa trị là 7.

b)

   - 1s22s22p4                            ; Nguyên tố thuộc chu kì 2 nhóm VIA.

   - 1s22s22p3                            ; Nguyên tố thuộc chu kì 2 nhóm VA.

   - 1s22s22p63s23p1                 ; Nguyên tố thuộc chu kì 3 nhóm IIIA.

   - 1s22s22p63s23p5                 ; Nguyên tố thuộc chu kì 3 nhóm VIIA.

28 tháng 3 2016

a) - 1s22s22p4                           ; Số electron hóa trị là 6.

 

   - 1s22s22p3                            ; Số electron hòa trị là 5.

 

   - 1s22s22p63s23p1                 ; Số electron hòa trị là 3.

 

   - 1s22s22p63s23p5                 ; Số electron hòa trị là 7.

 

b)

 

   - 1s22s22p4                            ; Nguyên tố thuộc chu kì 2 nhóm VIA.

 

   - 1s22s22p3                            ; Nguyên tố thuộc chu kì 2 nhóm VA.

 

   - 1s22s22p63s23p1                 ; Nguyên tố thuộc chu kì 3 nhóm IIIA.

 

   - 1s22s22p63s23p5                 ; Nguyên tố thuộc chu kì 3 nhóm VIIA.

phương trình dạng toán tử :  \(\widehat{H}\)\(\Psi\) = E\(\Psi\)

Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)

thay vào từng bài cụ thể ta có :

a.sin(x+y+z)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)

                =\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)

                =\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)

                = -3.sin(x+y+z)

\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.

b.cos(xy+yz+zx)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)

                =\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)

                =\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)

                =- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))

                =-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)

\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.

c.exp(x2+y2+z2)

\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))exp(x2+y2+z2)
                =\(\frac{\partial^2}{\partial x^2}\)exp(x2+y2+z2)+\(\frac{\partial^2}{\partial y^2}\)exp(x2+y2+z2) +\(\frac{\partial^2}{\partial z^2}\)exp(x2+y2+z2)
                =\(\frac{\partial}{\partial x}\)2x.exp(x2+y2+z2)+\(\frac{\partial}{\partial y}\)2y.exp(x2+y2+z2)+\(\frac{\partial}{\partial z}\)2z.exp(x2+y2+z2)
                =2.exp(x2+y2+z2) +4x2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4y2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4z2.exp(x2+y2+z2)
                =(6+4x2+4y2+4z2).exp(x2+y2+z2)
\(\Rightarrow\)exp(x2+y2+z2không là hàm riêng của hàm laplace.
d.ln(xyz)
\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))ln(xyz)
                =\(\frac{\partial^2}{\partial x^2}\)ln(xyz)+\(\frac{\partial^2}{\partial y^2}\)ln(xyz)+\(\frac{\partial^2}{\partial z^2}\)ln(x+y+z)
                =\(\frac{\partial}{\partial x}\)yz.\(\frac{1}{xyz}\)\(\frac{\partial}{\partial y}\)xz.\(\frac{1}{xyz}\) + \(\frac{\partial}{\partial z}\)xy.\(\frac{1}{xyz}\)
                =\(\frac{\partial}{\partial x}\)\(\frac{1}{x}\) + \(\frac{\partial}{\partial y}\)\(\frac{1}{y}\)+\(\frac{\partial}{\partial z}\)\(\frac{1}{z}\)
                = - \(\frac{1}{x^2}\)\(\frac{1}{y^2}\)\(\frac{1}{z^2}\)
\(\Rightarrow\) ln(xyz) không là hàm riêng của hàm laplace.
 
 
14 tháng 1 2015

đáp án D