Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án A
+ Trong bảng tuần hoàn các nguyên tố hóa học, nguyên tố thuộc chu kì 3, nhóm IIIA là Al.
+ Cu thuộc chu kỳ 4 nhóm IB; Ba thuộc chu kỳ 6 nhóm IIA; Zn thuộc chu kỳ 4 nhóm IIB.

Chu kì 2 có 8 nguyên tố, chu kì 6 có 18 nguyên tố
=> Đáp án B

Chọn C.
Vì số proton trong Y lớn hơn trong X 8 hạt nên ta tìm được X là N (Z = 7) và Y là P (Z= 15).

Đáp án : C
Chu kỳ 3 => có 3 lớp e
Nhóm IIIA => 3 e lớp ngoài cùng và e cuối điền vào phân lớp p
=> 1s22s22p63s23p1
=> p =13

Áp dụng ĐLBTKL:
mhh = mX + mY + mCO3 = 10 g; mA = mX + mY + mCl = 10 - mCO3 + mCl.
số mol CO3 = số mol CO2 = 0,03 mol.
Số mol Cl = 2 (số mol Cl2 = số mol CO3) (vì muối X2CO3 tạo ra XCl2, Y2CO3 tạo ra 2YCl3).
Do đó: mA = 10 - 60.0,03 + 71.0,03 = 10,33g.

TH1: Cả 2 muối \(NaX\) và \(NaY\) đều pứ vs \(\text{AgNO3}\)
\(NaZ\) + \(AgNO_3\) \(\rightarrow\) \(NaNO_3\) + \(AgZ\)
TH2: 2 muối của X và Y lần lượt là \(NaF\) và \(NaCl\)
Mol \(AgCl\) =8,61/143,5 = 0,06mol
0,06<= 0,06
m\(NaCl\) = 0,06.58,5=3,51g
%m\(NaF\) = 2,52/6,03 .100% = 41,79%
Do AgF tan, khác các muối còn lại nên chia thành 2 trường hợp:
TH1: Hai muối ban đầu là NaF và NaCl —> nNaCl = nAgCl = 0,06 —> %NaF = 41,79%
TH2: Cả 2 muối đều tạo kết tủa:
m tăng = n muối (108 – 23) = 8,61 – 6,03 —> n muối = 0,03 —> M = 198,6 —> Halogen = M – 23 = 175,6: Vô nghiệm

Thầy rất hoan nghênh bạn Thịnh đã trả lời câu hỏi 2, nhưng câu này em làm chưa đúng. Ở bài này các em cần phải vận dụng phương trình BET để tính diện tích bề mặt riêng:
Sr = (Vm/22,4).NA.So. Sau khi thay số các em sẽ ra được đáp số.
E làm thế này đúng không ạ?
n(N2)=PV/RT=1*129*10^-3/(0.082*273)=5.76*10^-3 (mol)
Độ hấp phụ: S=n(N2)/m=5.76*10^-3/1=5.76*10^-3 (mol/g)
Diện tích bề mặt silicagel: S=N*So*J=6.023*10^23*16.2*10^-20*5.76*10^-3=562(m2/g)

a) - 1s22s22p4 ; Số electron hóa trị là 6.
- 1s22s22p3 ; Số electron hòa trị là 5.
- 1s22s22p63s23p1 ; Số electron hòa trị là 3.
- 1s22s22p63s23p5 ; Số electron hòa trị là 7.
b)
- 1s22s22p4 ; Nguyên tố thuộc chu kì 2 nhóm VIA.
- 1s22s22p3 ; Nguyên tố thuộc chu kì 2 nhóm VA.
- 1s22s22p63s23p1 ; Nguyên tố thuộc chu kì 3 nhóm IIIA.
- 1s22s22p63s23p5 ; Nguyên tố thuộc chu kì 3 nhóm VIIA.
a) - 1s22s22p4 ; Số electron hóa trị là 6.
- 1s22s22p3 ; Số electron hòa trị là 5.
- 1s22s22p63s23p1 ; Số electron hòa trị là 3.
- 1s22s22p63s23p5 ; Số electron hòa trị là 7.
b)
- 1s22s22p4 ; Nguyên tố thuộc chu kì 2 nhóm VIA.
- 1s22s22p3 ; Nguyên tố thuộc chu kì 2 nhóm VA.
- 1s22s22p63s23p1 ; Nguyên tố thuộc chu kì 3 nhóm IIIA.
- 1s22s22p63s23p5 ; Nguyên tố thuộc chu kì 3 nhóm VIIA.

phương trình dạng toán tử : \(\widehat{H}\)\(\Psi\) = E\(\Psi\)
Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)
thay vào từng bài cụ thể ta có :
a.sin(x+y+z)
\(\bigtriangledown\)2 f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)
=\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)
=\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)
= -3.sin(x+y+z)
\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.
b.cos(xy+yz+zx)
\(\bigtriangledown\)2 f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)
=\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)
=\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)
=- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))
=-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)
\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.
c.exp(x2+y2+z2)
Đáp án C