![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thôi làm đa thức B trước cho dễ làm:
Ta có \(B=\left(3x+1\right)^2-x\left(5x+2\right)+3\)
\(=\left(3x\right)^2+2.3.x+1+1^2-5x^2-2x+3\)
\(=9x^2+6x+1-5x^2-2x+3\)
\(=4x^2+4x+4\)
\(=4\left(x^2+x+1\right)\)
\(A=x^{2016}-x^{2013}+x^2+x+1\)
\(=x^{2013}\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^{2013}\left(x-1\right)\left(x^2+x+1^2\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\text{[}x^{2013}\left(x-1\right)+\text{1]}\)
\(=4\left(x^2+x+1\right)\text{[}\frac{x^{2013}\left(x-1\right)+1}{4}\text{]}\)
Rồi bạn làm các bước còn lại nhen :v
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,x^4+2x^3+x^2=\left(x^2+x\right)^2\)
\(b,x^2+5x-6=x^2-x+6x-6=x\left(x-1\right)+6\left(x-1\right)\)\(=\left(x-1\right)\left(x+6\right)\)
\(c,5x\left(x-1\right)=x-1\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)\(x^4+8x=x\left(x^3+8\right)=x\left(x+2\right)\left(x^2-2x+4\right)\) \(e,x^2+x-6=x^2+3x-2x-6=x\left(x+3\right)-2\left(x+3\right)=\left(x-2\right)\left(x+3\right)\)\(f,x^2-2x-3=x^2-3x+x-3=x\left(x-3\right)+\left(x-3\right)=\left(x+1\right)\left(x-3\right)\)\(h,2x^2+5x-3=0\Leftrightarrow2x^2-6x+x-3=0\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b: \(=x^4+x^2+36-2x^3+12x^2-12x+x^2-6x+9\)
\(=x^4-2x^3+14x^2-18x+45\)
\(=x^4+9x^2-2x^3-18x+5x^2+45\)
\(=\left(x^2+9\right)\left(x^2-2x+5\right)\)
d: \(=2x^4+2x^3+6x^2-x^3-x^2-3x+x^2+x+3\)
\(=\left(x^2+x+3\right)\left(2x^2-x+1\right)\)
e: \(=3x^4-3x^3-3x^2-2x^3+2x^2+2x+2x^2-2x-2\)
\(=\left(x^2-x-1\right)\left(3x^2-2x+1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm
j) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\) ĐKXĐ: \(x\ne\pm5\)
\(\Leftrightarrow\frac{\left(x+5\right)^2}{x^2-25}-\frac{\left(x-5\right)^2}{x^2-25}=\frac{20}{x^2-25}\)
\(\Rightarrow x^2+10x+25-x^2+10x-25=20\)
\(\Leftrightarrow20x=20\)
\(\Leftrightarrow x=1\)
Vậy x = 1 là nghiệm phương trình.
k) \(\frac{3}{x-4}+\frac{5x-2}{x^2-16}=\frac{4}{x+4}\)
\(\Leftrightarrow\frac{3\left(x+4\right)}{x^2-16}+\frac{5x-2}{x^2-16}=\frac{4\left(x-4\right)}{x^2-16}\)
\(\Rightarrow3x+12+5x-2=4x-16\)
\(\Leftrightarrow4x=-26\)
<=> \(x=-\frac{13}{2}\)
Vậy x = -13/2 là nghiệm phương trình.
l) \(\frac{2x-1}{3}-\frac{5x+2}{4}=2x\)
\(\Leftrightarrow4x-4-15x-6=24x\)
\(\Leftrightarrow-35x=10\)
\(\Leftrightarrow x=-\frac{2}{7}\)
Vậy x = -2/7 là nghiệm phương trình.
Bài làm
2 - x = 3x + 1
<=> - x - 3x = -2 + 1
<=> -4x = -1
<=> x = 1/4
Vậy x = 1/4 là nghiệm phương trình.
4x + 7( x - 2 ) = -9x + 5
<=> 4x + 7x - 14 = -9x + 5
<=> 4x + 7x + 9x = 14 + 5
<=> 20x = 19
<=> x = 19/20
Vậy x = 19/20 là nghiệm phương trình.
5x - 2( 3x - 5 ) = 7x + 11
<=> 5x - 6x + 10 = 7x + 11
<=> 5x - 6x - 7x = 11 - 10
<=> -8x = -21
<=> x = 21/8
Vậy x = 21/8 là nghiệm phương trình.
( 5x + 2 )( x - 7 ) = 0
<=> \(\left[{}\begin{matrix}5x+2=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2}{5}\\x=7\end{matrix}\right.\)
Vậy tập nghiệm phương trình S = { -2/5; 7 }
2x( x - 5 ) + 3( x - 5 ) = 0
<=> ( 2x + 3 )( x - 5 ) = 0
<=> \(\left[{}\begin{matrix}2x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=5\end{matrix}\right.\)
Vậy tập nghiệm phương trìh S = { -3/2; 5 }
\(\frac{5x-3}{6}=\frac{-2x+5}{9}\)
\(\Rightarrow6\left(-2x+5\right)=9\left(5x-3\right)\)
\(\Leftrightarrow-12x+30=45x-27\)
\(\Leftrightarrow-57x=-57\)
\(\Leftrightarrow x=1\)
Vậy x = 1 là nghiệm phương trình.
\(\frac{x}{3}-\frac{2x+1}{2}=\frac{5x}{6}\)
\(\Leftrightarrow2x-3\left(2x+1\right)=5x\)
\(\Leftrightarrow2x-6x-3=5x\)
\(\Leftrightarrow-9x=3\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Vậy x = -1/3 là nghiệm phương trình.
\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)
\(\Leftrightarrow2x-6x-3=x-6x\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy x = 3/2 là nghiệm phương trình.
\(\frac{3}{x+1}=\frac{5}{2x+2}\) ĐKXĐ: x khác 1
<=> \(\frac{6}{2x+2}=\frac{5}{2x+2}\)( vô lí )
Vậy phương trình trên vô nghiệm.
# Học tốt #
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\Leftrightarrow x^2\left(x^2+x-12\right)=0\)
\(\Leftrightarrow x^2\left(x+4\right)\left(x-3\right)=0\)
hay \(x\in\left\{0;-4;3\right\}\)
d: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)=0\)
hay \(x\in\left\{-6;1;-1;-4\right\}\)
f: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
hay \(x\in\left\{-3;2\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x=-10\)
\(\Leftrightarrow x=-\dfrac{5}{12}\)
Vậy:....
\(b,\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25^2+9=30\)
\(\Leftrightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy :....
\(c,\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)\(\Leftrightarrow x^3+27-x\left(x^2-4\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=15-27=-12\)
\(\Leftrightarrow x=-3\)
vậy : .....
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
\(x^2+x-6=x^2+3x-2x+6\)
\(=x\left(x+3\right)-2\left(x+3\right)\)
\(=\left(x-2\right)\left(x+3\right)\)
\(b,x^4+2x^3+x^2=\left(x^2+x\right)^2\)
\(e,x^2+5x-6=x^2+6x-x-6\)
\(=x\left(x+6\right)-\left(x+6\right)=\left(x-1\right)\left(x+6\right)\)
\(f,5x^2+5xy-x-y=5x\left(x+y\right)-\left(x+y\right)=\left(5x-1\right)\left(x+y\right)\)\(g,7x-6x^2-2=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)=\left(2-3x\right)\left(2x-1\right)\)\(i,2x^2+3x-5=2x^2-2x+5x-5\)
\(=2x\left(x-1\right)+5\left(x-1\right)=\left(2x+5\right)\left(x-1\right)\)
\(j,16x-5x^2-3=-5x^2+15x+x-3\)
\(=-5x\left(x-3\right)+\left(x-3\right)=\left(5x-1\right)\left(x+3\right)\)
Bài 2,
\(a,5x\left(x-1\right)=x-1\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=1\end{matrix}\right.\)
\(b,2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\)\(x^4-4x^3+4x^2=0\)
\(\Leftrightarrow x^2.\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x^2.\left(x^2-2.x.2+2^2\right)=0\)
\(\Leftrightarrow x^2.\left(x-2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(b,\)\(x^2+5x+4=0\)
\(\Leftrightarrow x^2+x+4x+4=0\)
\(\Leftrightarrow x.\left(x+1\right)+4.\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right).\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
\(c,\)\(9x-6x^2-3=0\)
\(\Leftrightarrow-3.\left(2x^2-3x+1\right)=0\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow2x^2-2x-x+1=0\)
\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right).\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
\(d,\)\(2x^2+5x+2=0\)
\(\Leftrightarrow2x^2+4x+x+2=0\)
\(\Leftrightarrow2x.\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\2x=-1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)
Olm chào em, em xem hướng dẫn chi tiết dưới đây em sẽ hiểu vì sao em nhé.
Giải:
\(x^2\) - 5\(x\) + 6
= (\(x^2\) - 3\(x\)) - (2\(x-6\))
= \(x\left(x-3\right)-2\left(x-3\right)\)
= (\(x-3\))(\(x-2\))