Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dưới tác dụng của ánh sáng Mặt Trời , nước ở bề mặt Trái đất sẽ bốc hơi bay lên không trung . Do tầng không khí trên cao có nghiệt độ thấp , nên khi hơi nước gặp tầng không khí này sẽ kết thành những giọt nước . Những giọt nước này có trọng lượng nhỏ và bị không khí cuốn đi , khi chúng tụ tập lại thành một đám lớn thì đó chính là mây .
Hok tốt
#Bé_Bông#
Vì tính chất của hoa hướng dương là luôn hướng về phía mặt trời (hướng: về phía; dương: ánh dương), tức là quay về phía mặt trời nên mới có tên gọi nv
TK MIK NHÁ~~~~~~~~
Hướng Dương có nguồn gốc ở Bắc Mỹ cách đây khoảng 5000 năm. Vào thế kỷ 16, các nhà thám hiểm mang hoa hướng dương sang châu Âu, rồi từ đó, nó được du hành theo con đường thương mại của các nhà buôn.
Năm 1532, Francisco Pizarro đã thuật lại việc ông nhìn thấy những người Inca bản xứ ở Pêru tôn thờ bông hoa hướng dương như một biểu tượng của mặt trời. Đóa hoa to lớn có những cánh vàng bao quanh một dĩa tròn màu vàng sẫm, nâu hay tím này thuộc về một nhóm có tên khoa học là Helianthus, do hai chữ Hy Lạp ghép lại : "helios" nghĩa là mặt trời và "anthos" là hoa. “Những bông hoa luôn hướng về phía mặt trời”.
Mưa trên đất liền được quy lại bởi các dòng sông, suối và cuối cùng lại chảy ra biển. ... Chính vì lý do đó, nước tại các con sông trên đất liền không có vịmặn, nhưng khi chảy ra biển lại tiếp tục hòa tan lượng muối vẫn còn dưới biển và tiếp tục có vị mặn.
Học tốt nha <3
Nước mưa hòa tan các khoáng chất và muối từ đá và đất khô, rồi cuốn trôi chúng ra sông. Tuy nhiên, lượng muối tích tụ trong các sông vẫn rất nhỏ, không đầy 1/200 lượng natri clorua tồn tại trong nước biển. ... Độ mặn của nước biển cũng không như nhau trên khắp Trái đất.
t.i.ck nha :)))
Hướng dẫn giải:
- Dấu chấm hỏi dùng để đánh dấu kết thúc câu hỏi. Trong đoạn thơ này các câu hỏi đều là tác giả Tố Hữu tự hỏi mình và dùng để khẳng định.
Thường thường, việc dùng chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, đối với chúng ta dường như hiển nhiên đến nỗi chúng ta có khuynh hướng xem đó như là khả năng bẩm sinh của con người, như điều gì đó đến tự nhiên, như biết đi hay biết nói. Chúng ta phải nhớ lại bước đầu tập luyện thao tác khó khăn với các con số (Ôi! ê a đọc thuộc lòng bảng cửu chương) để đoán rằng quả là một cái gì đã được phát minh và phải được truyền tiếp. Và chỉ cần gợi nhớ mang máng hệ đếm La Mã (những chữ số La Mã nổi tiếng còn được dùng để nhấn mạnh vài con số quan trọng như số của một thế kỷ) để ta xác nhận rằng người ta đã không đếm như hiện nay, cũng không viết chữ số như bây giờ.
Vậy thì có chỗ đứng cho một lịch sử chữ số thế giới. Bởi nếu lịch sử này có những bước đi chập chững và không liên tục, chỉ được chúng ta biết đến từng đoạn, cuối cùng nó cũng quy tụ về chữ số và hệ đếm dùng vị trí định lượng hiện đang được sử dụng khắp thế giới. Đây là lịch sử của một phát minh vĩ đại, hay nói đúng hơn là của một loạt những phát minh, trải dài trên nhiều thiên niên kỷ, có lẽ hàng chục thiên niên kỷ. Tôi đã kể chi tiết chuyện này trong quyển sách tựa đề Lịch sử chữ số thế giới[1], nhưng nay tôi muốn thuật lại, cho tầng lớp bạn đọc rộng rãi hơn, các giai đoạn chính. Ở đây sẽ không có nhiều tài liệu chi tiết khiến cuốn sách khó hiểu. Nhưng bạn đọc sẽ vẫn có thể dễ dàng theo dõi, mà không bị rơi vào sự đơn giản hóa quá mức, những nét nổi bật của cuộc tiến hoá đa dạng phức tạp, và nhờ có nhiều minh hoạ, giai thoại cũng như phục dựng, bạn đọc sẽ khám phá cách đếm của những nền văn minh lớn trong quá khứ (văn minh Sumer, Babylone, Ai Cập, Hy Lạp, La Mã, Hébreu (Hê-brơ), Maya, Trung Hoa, Ấn Độ và dĩ nhiên A Rập). Tôi hy vọng bạn đọc sẽ thích thú khi được xem lại các giai đoạn của bài toán nhân Ai Cập hay bài toán chia Sumer. Và bạn đọc sẽ hiểu hơn tại sao, bốn phép tính số học, ngày nay với chúng ta thật là sơ đẳng mà trong hàng chục thế kỷ lại là một nghệ thuật khó hiểu và phức tạp cho bao nhiêu triệu người, chỉ dành riêng cho một tầng lớp ưu tú hiếm hoi, thường thuộc giới tăng lữ. Bạn đọc có thể sẽ ngạc nhiên nhận thấy rằng ở châu Âu cách nay vài thế kỷ thôi, người ta còn làm tính không phải với chữ số mà trên đầu ngón tay hay còn dùng thẻ tròn trên bàn tính và làm kế toán bằng que có khấc. Để nắm vững các bí ẩn của phép nhân, chia, cậu con trai của một thương gia giàu có thời Trung cổ đã phải trải qua nhiều năm học tập và muôn nỗi thăng trầm của một cuộc hành trình xuyên khắp châu Âu. Tương đương nói chung với một bằng tiến sĩ bây giờ.
Thế nên, lịch sử này không phải là một lịch sử trừu tượng và thẳng tắp như đôi khi người ta hiểu lầm về lịch sử toán học: cho nó là một chuỗi ý niệm liên kết hoàn hảo. Ngược lại, đây là lịch sử những nhu cầu và những mối quan tâm của các nhóm xã hội khác nhau muốn tìm ra cách đếm người, tài sản, tổn thất, tù binh, ghi lại ngày tạo dựng thành quách và ngày chiến thắng, bằng phương tiện có gì dùng nấy, khi thì từ kinh nghiệm như vết khấc, khi thì bằng phong cách kỳ lạ của những huyền thoại như ở người Ai Cập. Và giữa họ, rõ ràng có rất nhiều thành kiến.
Có những nhóm tỏ ra thực dụng và giới hạn hoài bão của mình trong mục đích hoàn toàn mang tính kế toán; lại có những nhóm khác, để muốn biết mình ở đâu so với vô biên và vĩnh hằng, đòi tính đếm đất trời, tính lượng ngày, tháng, năm từ khi tạo thiên lập địa hay ít ra cũng từ một mốc thời gian nào đó đã từ lâu mất ý nghĩa. Chính nhóm người thứ nhì, mà người ta cho là mơ mộng, theo tôi, có lý: phải thể hiện cho được các con số thật lớn, họ đã từ bỏ cách dùng vô số ký hiệu và chọn hướng đi vào con đường của hệ đếm dùng vị trí định lượng và con Zéro (số Không).
Nhưng các khám phá này không bao giờ được gìn giữ lâu dài: khi một nền văn minh suy vong, Babylone hay Maya chẳng hạn, thì ít nhiều kỹ thuật về những con số cũng mất theo với đẳng cấp ưu tú của xã hội đó, chủ yếu là giới tăng lữ. Thế là phải làm lại từ đầu. Chính vì thế mà đây là một lịch sử gian nan, hỗn loạn và đầy thăng trầm, với tiến trình mò mẫm, đứt quãng bởi thử nghiệm và sai lầm, bế tắc, lãng quên và từ bỏ (đối với chúng ta là những người ít ra biết được thành quả cuối cùng), thì thật chẳng khác gì tác phong của người say rượu.
Dù các phát minh quan trọng đến thế nào chăng nữa, lịch sử chữ số hoàn toàn vô danh. Vì được xây dựng bởi và cho các cộng đồng, nó không cấp bằng phát minh. Không phải tất cả các tên tuổi đều vắng mặt; chúng có đầy trên các tài liệu bằng đá, giấy cói, da cừu, giấy bột, vải vóc và một người chủ đoàn thú hay một kẻ thắng trận nào đó đã bất tử hoá danh tính không còn có ý nghĩa gì với chúng ta nữa, bằng cách kết hợp nó với chữ số. Chúng ta thường biết được tên của những người đã lưu truyền, khai thác hay bình phẩm chữ số và hệ đếm. Nhưng bản thân tên những người tìm ra chúng thì hiển nhiên đã mãi mãi mất đi. Có lẽ vì các phát minh có từ thời quá xa xưa. Cũng có thể những phát minh thiên tài này đã được làm nên bởi những con người bình thường, không có quyền được ghi tên vào sử sách. Cuối cùng, có thể vì là sản phẩm của những thực hành tập thể nên không thể gắn chúng cho một cá nhân. Nhà phát minh ra số Zéro có thể là viên thư lại tỉ mỉ quan tâm đến việc giới hạn vị trí trong một chuỗi chữ số tuân theo nguyên tắc vị trí định lượng, và có lẽ y đã không bao giờ ý thức được tính cách mạng của công việc mình làm.
Vả lại, tôi đã ngạc nhiên là theo truyền thuyết, chữ viết thường được coi như quà tặng của một vị thần nào đó cho con người nhưng chữ số nói chung thì không, mặc dù chữ số chắc chắn được phát minh ra trước chữ viết. Nhưng điều đó không có nghĩa là con số đã giữ vai trò nhỏ bé trong tư tưởng huyền bí và tôn giáo. Hoàn toàn trái lại. Người ta đã biết tới nỗi sợ hãi do mê tín mà con người có từ bao đời, đến mức thường đồng hoá con số với quyền lực, thậm chí với thần linh, tốt hay xấu tuỳ trường hợp và biểu tượng số được gắn chặt như một yếu tố cơ bản với tên và đặc tính [của vị thần]. Chẳng hạn các pháp sư Babylone đã đặt cho mỗi vị thần của đền thờ một con số, theo thứ tự lùi phản ánh cấp bậc của mỗi vị (60, liên hệ với thần trời Anu; 50, thần đất Enlil; 40, thần nước Ea v.v.). Có lẽ người ta đã muốn làm rõ nét bản chất ưu việt của thần linh so với con người bằng cách gán cho các vị thần những khái niệm trừu tượng nhất vừa tầm với họ: khái niệm con số mà chữ số là lớp áo ngoài.
Lịch sử này không theo quy luật logic nào. Đây là mối quan tâm của nhà kế toán, nhưng cũng là của nhà tu hành, nhà thiên văn và cuối cùng mới là của nhà toán học. Chính những mối quan tâm này đã chủ trì việc phát minh và sự tiến hoá của hệ đếm. Và các thành phần xã hội ấy, rõ ràng là bảo thủ, ít nhất là ba hạng người đầu (kế toán, nhà tu, nhà thiên văn), hiển nhiên đã cố tình làm chậm trễ sự cải tiến và việc truyền bá hệ đếm của họ. Vì khi một tri thức được phong cho một quyền lực, dù hết sức sơ đẳng dưới mắt chúng ta nhưng biết bao tinh tế đối với tổ tiên ta, thì dường như chia sẻ nó sẽ khủng khiếp như một hành vi nghịch đạo. Về điểm này, trong nhiều lĩnh vực khác, có thể một số quan chức còn giữ lề thói ấy.
Nhưng còn nhiều lý do khác nữa. Một phát minh, một khám phá chỉ có thể được phát triển nếu nó đáp ứng nhu cầu xã hội của một nền văn minh, còn khoa học cơ bản thì đáp ứng một đòi hỏi lịch sử xuất phát từ tiềm thức của nhà bác học. Và đổi lại, hẳn nhiên là phải có đi có lại, nó làm thay đổi hoặc đảo lộn nền văn minh ấy.
Bao nhiêu bước tiến khoa học thời xưa, quả nhiên, đã không được phát triển bởi vì đòi hỏi của xã hội lúc bấy giờ không bức thiết.
Ngoài ra, theo dòng thời gian, qua nhiều tư liệu về cách sử dụng chữ số của nhiều dân tộc khác nhau, ta có thể tìm ra dấu vết các mối quan tâm không liên hệ mấy với toán học mà lại mang tính thần bí, bói toán, thơ mộng, thậm chí phóng đãng. Những dư âm này chứng tỏ rằng chữ số, không hề là vectơ của xã hội kỹ thuật và thống kê của chúng ta, từ bao đời đã lại là điểm tựa cho mộng mơ, ảo ảnh, tư biện siêu hình học, chất liệu của văn học, thăm dò tương lai vô định hay ít ra là ước vọng muốn tiên đoán. Chữ số là chất thơ. Chữ số được nhân loại nhào nặn.
Có lẽ trẻ em cảm nhận rõ điều này hơn khi chúng bắt đầu học khám phá chữ số. Vả chăng, nghiên cứu của tôi bắt nguồn từ một câu hỏi trẻ thơ. Thuở tôi còn dạy Toán, một hôm tôi gặp phải một thắc mắc ngây thơ đáng gờm: “Chữ số từ đâu đến? Ngày xưa người ta đếm như thế nào? Ai phát minh ra số Zéro?” Gần như bị nhục mạ, bằng cách ứng tác một câu trả lời vụng về, tôi đã đo được cả tầm cỡ dốt nát của mình và hiểu ra những điểm yếu của một nền giáo dục trong đó lịch sử khoa học không hề được nhắc đến. Sau nhiều năm làm việc và tìm tòi nghiên cứu, những điều đã dẫn tôi hoặc tư tưởng của tôi đi khắp năm châu, tôi không thể khẳng định đã trả lời thấu đáo, nhưng dù sao cũng chính xác hơn trước. Quyển sách này, vốn dành cho những tâm hồn trẻ trung tò mò ham hiểu biết, là biểu hiện trọn vẹn lòng say mê và câu trả lời thực sự của tôi cho câu hỏi ngày xưa.
Cần phải luôn thận trọng trước những câu hỏi xem chừng “ngây thơ” của trẻ con. Cần phải luôn cố gắng trả lời những câu hỏi ấy. Nhưng nếu bạn chỉ hơi chút tò mò thì những câu hỏi này có nguy cơ dẫn bạn đi rất xa, xa hơn là bạn tưởng rất nhiều. Về điểm này, các em học trò đôi khi cũng có thể là những nhà giáo tuyệt vời.
Theo năm tháng, tôi cũng đã nhận được sự ủng hộ của thính giả đến nghe tôi diễn thuyết, thông qua các câu hỏi của họ, cùng sự khích lệ và những thông tin rất quý báu của đông đảo các nhà bác học đầy thiện chí, những người mà tôi đã mắc nợ toàn bộ sự hiểu biết của mình.
Cũng phải nói rằng, nếu không có sự cộng tác của Gérard Klein, nhà xuất bản và cũng là bạn thân của tôi, mà các câu hỏi, lời khuyên và ý kiến phê bình đã giúp đỡ tôi rất nhiều, thì có lẽ tôi sẽ chẳng bao giờ khai hoang được một số vùng đất của cái xứ sở từ lâu không ai thăm dò đến này. Vì một ngày nọ, sau khi ông đã đặt cho tôi một trong những câu hỏi cực kỳ “ngây thơ” ấy và trong khi thử trả lời, tôi đã tìm được giải đáp cho một vấn đề hóc búa đã làm bối rối các nhà khảo cổ học từ đầu thế kỷ XX: giải mã các ký hiệu của hệ đếm đã được dùng ở Iran cách nay 5000 năm.
Về cơ bản, cuốn sách này chủ yếu tóm tắt các tư liệu đã được tập hợp trong quyển Lịch sử chữ số thế giới của tôi. Nhưng mọi nghiên cứu đều biến chuyển, nên trên nhiều điểm, tôi có thêm những lời giải thích rõ ràng chưa được công bố, đặc biệt là vấn đề lý thú và tế nhị về nguồn gốc chữ số của chúng ta, được quen gọi là chữ số A Rập, sinh ra từ Ấn Độ, cách nay hơn 15 thế kỷ, từ sự liên kết có thể đã không xảy ra giữa hành dụng và truyền thống. Đây là một lịch sử kỳ diệu, liên quan mật thiết với lịch sử trí thông minh con người. Nhưng trước khi xem chương cuối cùng rất quan trọng đánh chương 0, xin mời các bạn đọc chín chương trước đó.
Vì đó là quy luật của toán học.
1 < 2 < 3 < 4 < 5 < 6 < 7 ...
Mây tạo thành khi hơi nước bốc lên, gặp lạnh và ngưng tụ trong không khí như những giọt nhỏ. Các hạt nhỏ này là tương đối đặc và ánh sáng không thể đi sâu vào trong mây trước khi nó bị phản xạ ra ngoài, tạo cho mây có màu đặc trưng là màu trắng.
#Phuongoke
Mây tạo thành khi hơi nước bốc lên, gặp lạnh và ngưng tụ trong không khí như những giọt nhỏ. Các hạt nhỏ này là tương đối đặc và ánh sáng không thể đi sâu vào trong mây trước khi nó bị phản xạ ra ngoài, tạo cho mây có màu đặc trưng là màu trắng.
Hk tốt !