Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt f(x) = x 2 , x ∈ R
Đồ thị:
Từ đồ thị của hai hình đó ta có:
f(0,5) < g(0,5);
f(1) = g(1) = 1;
f(3/2) > g(3/2), f(2) > g(2);
f(3) > g(3), f(4) > g(4).
Đặt f(x) = x 2 , x ∈ R
Đồ thị:
Từ đồ thị của hai hình đó ta có:
f(0,5) < g(0,5);
f(1) = g(1) = 1;
f(3/2) > g(3/2), f(2) > g(2);
f(3) > g(3), f(4) > g(4).
Chọn A
Do y = logax và y = logbx là hai hàm đồng biến nên a > 1; b > 1
Do y = logcx nghịch biến nên c < 1 . Vậy c bé nhất.
Mặt khác: Lấy y = m, khi đó tồn tại x1; x2 > 0 để
Do y = logax và y = logbx là hai hàm dồng biến nên a > 1; b > 1
Do y = logcx nghịch biến nên c < 1. Vậy c bé nhất.
Mặt khác: Lấy y = m, khi đó tồn tại x1, x2 > 0 để
Chọn A
Do y = ax và y = bx là hai hàm đồng biến nên a > 1; b > 1.
Do y = cx nghịch biến nên c < 1. Vậy c bé nhất.
Mặt khác: Lấy x = m, khi đó tồn tại y1; y2 > 0 để
Dễ thấy y1 < y2 ⇒ am < bm ⇒ a < b
Vậy b > a > c.
Chọn A
Ta có: