Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BF và DE=BF
hay BDEF là hình bình hành
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó: I là trung điểm của AH
A B C H D E F
a) DE là đường trung bình của tam giác nên DE//BC và DE = 1/2 BC = BF
=> BDEF là hình bình hành vì có cặp cạnh đối DE và BF song song và bằng nhau.
b) Tam giác vuông HBA có HD là trung tuấn ứng với cạnh huyền => HD = 1/2 AB = BD
=> Tam giác DBH cân tại D.
c) Điểm G ở đâu hả bạn?
a. Xét ∆AHB vuông tại H có HM là đường
đường trung tuyến ( gt ) nên HM =
2AB( 1 )
Trong ∆ABC có N là trung điểm của AC ( gt ) O
và K là trung điểm của BC ( gt ) nên NK là
đường trung bình của ∆ABC → NK = 2AB( 2 ) B H K C
Từ ( 1 ) & ( 2 ) → HM = NK I
b) Trong ∆AHC vuông tại H có HN là đường trung tuyến ( gt ) nên HN = AC( 3 )
+ ∆ABC có M là trung điểm của AB ( gt ) và K là trung điểm của BC ( gt ) nên MK là
đường trung bình của ∆ABC → MK = AC ( 4)
Từ ( 3 ) & ( 4 ) → HN = 2MK (a)
+ ∆ABC có M là trung điểm của AB ( gt ) và N là trung điểm của AC ( gt ) nên MN là
đường trung bình của ∆ABC → MN // BC hay MN // KH
→ MNKH là hình thang (b). Từ (a) & (b) → MNKH là hình thang cân.
Bài 1:
a) Xét tam giác ABC vuông tại A có:
+ D là trung điểm của AB (gt).
+ E là trung điểm của AC (gt).
=> DE là đường trung bình (Định nghĩa đường trung bình trong tam giác).
=> DE = \(\dfrac{1}{2}\)BC (Tính chất đường trung bình trong tam giác).
Mà BC = 10 cm (gt).
=> DE = 5 cm.
Vậy DE = 5 cm.
b) Xét tam giác ABC vuông tại A có:
DE là đường trung bình (cmt)
=> DE // BC (Tính chất đường trung bình trong tam giác).
Ta có: F là trung điểm của BC (gt). => BF = CF = \(\dfrac{1}{2}\)BC.
Mà DE = \(\dfrac{1}{2}\)BC (cmt).
=> BF = CF = DE = \(\dfrac{1}{2}\)BC.
Xét tứ giác BDEF có:
+ BF = DE (cmt).
+ BF // DE (do DE // BC).
=> Tứ giác BDEF là hình bình hành (dhnb).
c) Xét tam giác ABC vuông tại A:
+ D là trung điểm của AB (gt).
+ F là trung điểm của BC (gt).
=> DF là đường trung bình (Định nghĩa đường trung bình trong tam giác).
=> DF // AC và DF = \(\dfrac{1}{2}\)AC (Tính chất đường trung bình trong tam giác).
Ta có: DF = \(\dfrac{1}{2}\)AC (cmt).
Mà AE = CE = \(\dfrac{1}{2}\)AC (E là trung điểm AC).
=> AE = CE = DF = \(\dfrac{1}{2}\)AC.
Xét tứ giác ADEF có:
+ AE = DF (cmt).
+ AE // DF (do DF // AC).
=> Tứ giác ADEF là hình bình hành (dhnb).
Mà ^DAE = 90o (do tam giác ABC vuông tại A).
=> Tứ giác ADEF là hình chữ nhật (dhnb).
d) Gọi I là giao điểm của AF và DE.
Xét hình chữ nhật ADEF có: I là giao điểm của AF và DE (cách vẽ).
=> I là trung điểm của AF và DE (Tính chất hình chữ nhật). (1)
Ta có: G là điểm đối xứng của F qua D (gt).
=> D là trung điểm của CG.
=> DF = \(\dfrac{1}{2}\)GF.
Mà DF = \(\dfrac{1}{2}\)AC (cmt).
=> GF = AC.
Xét tứ giác GACF có:
+ GF = AC (cmt).
+ GF // AC (do DF // AC).
=> Tứ giác GACF là hình bình hành (dhnb).
=> Giao điểm của 2 đường chéo AF và GC là trung điểm mỗi đường (Tính chất hình bình hành).
Mà I là trung điểm của AF (cmt)
=> I là trung điểm của GC (2).
Từ (1) và (2) => Các đường thẳng AF; GC; DE cùng cắt nhau tại điểm I.
hay các đường thẳng AF; GC; DE cùng cắt nhau tại trung điểm mỗi đường (đpcm).
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó:ADME là hình chữ nhật
Suy ra: DE=AM
b: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
M là trung điểm của bC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
E là trung điểm của AC
M là trung điểm của BC
DO đó: EM là đường trung bình
=>EM//AB và EM=AB/2
=>EM//BD và EM=BD
hay BDEM là hình bình hành
c: Ta có: BDEM là hình bình hành
mà O là giao điểm của hai đường chéo
nên O là trung điểm chung của BE và DM
Xét ΔEBC có
O là trung điểm của EB
I là trung điểm của CE
Do đó: OI là đường trung bình
=>OI=BC/2
mà AM=BC/2
nên OI=AM
Xét tứ giác AOMI có MO//AI
nên AOMI là hình thang
mà OI=AM
nên AOMI là hình thang cân
Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BF và DE=BF
hay BDEF là hình bình hành