Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\Delta ABC=\Delta MNP\)( Giả thiết )
\(\Rightarrow AB=MN=3cm\)
\(AC=MP=4cm\)'
\(BC=NP=6cm\)
Vậy MN = 3 cm
MP = 4 cm
NP = 6 cm
LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ
Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)
Xét tam giác MAB và tam giác MAC
MB=MC(tam giác MBC đều)
Chung MA
AB=AC(tam giác ABC cân tại A)
=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA
=> góc BMA=30 độ
Xét tam giác BMA và tam giác BCD
góc BMA=BCD(=30)
BM=BC(tam giác MBC đều)
goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )
=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40
=> BAD=(180-40)/2=70
Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)
Xét tam giác BIA và tam giác CIA
AB=AC ( ABC cân tại A)
ABI=ACI(=10)
BI=CI(do BIC đều)
=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20
Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)
Do đó BAI=BDC hay BDC=20
a, \(\left|x-3,5\right|+\left|x-\frac{1}{3}\right|=0\)
\(\hept{\begin{cases}x-3,5\ge0\forall x\\x-\frac{1}{3}\ge0\forall x\end{cases}\Rightarrow\left|x-3,5\right|+\left|x-\frac{1}{3}\right|\ge0\forall x}\)
Dấu ''='' xảy ra <=> \(x-3,5=0\Leftrightarrow x=3,5\)
\(x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{3}\)
b, \(\left|x\right|+x=\frac{1}{3}\Leftrightarrow\left|x\right|=\frac{1}{3}-x\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}-x\\x=-\frac{1}{3}+x\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{1}{3}\\0\ne-\frac{1}{3}\end{cases}\Leftrightarrow}x=\frac{1}{6}}\)
c, \(\left|x-2\right|=x\Leftrightarrow\orbr{\begin{cases}x-2=x\\x-2=-x\end{cases}\Leftrightarrow\orbr{\begin{cases}-2\ne0\\x=1\end{cases}}}\)
d, tương tự c
Sửa ý a) của bạn @akirafake
a) \(\left|x-3,5\right|+\left|x-1,3\right|=0\)
Ta có : \(\left|x-3,5\right|+\left|x-1,3\right|=\left|-\left(x-3,5\right)\right|+\left|x-1,3\right|=\left|3,5-x\right|+\left|x-1,3\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(\left|3,5-x\right|+\left|x-1,5\right|\ge\left|3,5-x+x-1,5\right|=\left|2\right|=2\)
mà \(\left|x-3,5\right|+\left|x-1,3\right|=0\)( vô lí )
Vậy không có giá trị của x thỏa mãn
b) \(\left|x\right|+x=\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{3}-x\)
=> \(\orbr{\begin{cases}x=\frac{1}{3}-x\\x=x-\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{1}{3}\\0x=-\frac{1}{3}\end{cases}\Rightarrow}2x=\frac{1}{3}\Rightarrow x=\frac{1}{6}\)
c) \(\left|x\right|-x=\frac{3}{4}\)
=> \(\left|x\right|=\frac{3}{4}+x\)
=> \(\orbr{\begin{cases}x=\frac{3}{4}+x\\x=-x-\frac{3}{4}\end{cases}\Rightarrow}\orbr{\begin{cases}0x=\frac{3}{4}\\2x=-\frac{3}{4}\end{cases}}\Rightarrow2x=-\frac{3}{4}\Rightarrow x=-\frac{3}{8}\)
d) \(\left|x-2\right|=x\)
=> \(\orbr{\begin{cases}x-2=x\\x-2=-x\end{cases}}\Rightarrow\orbr{\begin{cases}0x=2\\2x=2\end{cases}}\Rightarrow2x=2\Rightarrow x=1\)
e) \(\left|x+2\right|=x\)
=> \(\orbr{\begin{cases}x+2=x\\x+2=-x\end{cases}}\Rightarrow\orbr{\begin{cases}0x=-2\\2x=-2\end{cases}}\Rightarrow2x=-2\Rightarrow x=-1\)
Thế x = -1 ta được :
\(\left|-1+2\right|=-1\)( vô lí )
=> Không có giá trị của x thỏa mãn
b) Vì H là trung điểm BC
=> BH = HC
Mà BH = BE (gt)
=> BH = HC = BE
Vì ∆ABC cân tại A
=> AB = AC
Mà AB = CD (gt)
=> AB = AC = CD
Ta có :
EB + AB = AE
HC + CD = HD
=> AE = HD
a) Ta có :
ACB là góc ngoài tại C của ∆ACD
Vì CA = CD
=> ∆ACD cân tại C
=> D = DAC = 2D
=> ACB = D + CAD = 2D
=> D = \(\frac{1}{2}ACB\:=\frac{1}{2}ABC\)(dpcm)
A B C D K M
a, Xét t/g ABD và t/g ACD có:
AB=AC(gt),BD=CD(gt),AD chung
=> t/g ABD = t/g ACD (c.c.c)
=> góc DAB = góc DAC (2 góc tương ứng)
=> AD là tia p/g của góc BAC
b, Ta có: \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-20^o}{2}=80^o\) (tam giác ABC cân tại A)
Vì t/g DBC đều => góc DBC = góc DCB = góc BDC = 60 độ
=> góc ABD = góc ABC - góc DBC = 80 độ - 60 độ = 20 độ
=> góc BAC = góc ABD = 20 độ
Lại có: góc ABM = góc DBM = góc ABC / 2 = 20 độ/2 = 10 độ (BM là tia p/g của góc ABD)
góc DAB = góc DAC = góc BAC/2 = 20 độ / 2 = 10 độ (AD là tia p/g của góc BAC)
=> góc ABM = góc DAB = 10 độ
Xét t/g ABM và t/g BAD có:
góc ABM = góc DAB (c/m trên), AB chung, góc BAM = góc ABD (c/m trên)
=> t/g ABM = t/g BAD (g.c.g)
=>AM = BD (2 cạnh tương ứng)
Mà BD = BC (t/g DBC đều)
=> AM = BC
P/s: hình vẽ minh họa thôi
Theo như đề bài ta đã có các góc N và P. Vậy ta cần tính góc M
(-) Như ta biết tổng ba góc của một tam giác bằng 180o
=> N + P + M = 180o
60o + 80o + M = 180o
140 o + M = 180o
M = 180o - 140o
M = 40o
Vì tam giác ABC = tam giác MNP nên góc A = M; B = N; C = P
=> A = 40o; B = 60o; C = 80o
Xin lỗi bạn mik không biết ghi góc như bạn nên mong bạn thông cảm
Học tốt!!!
Ta có:\(\widehat{M}\)+\(\widehat{N}\)+\(\widehat{P}\)=180 độ
Mà \(\widehat{N}\)=60 độ;\(\widehat{P}\)=80 độ suy ra \(\widehat{M}\)=40 độ
Vì\(\Delta ABC=\Delta MNP\)suy ra \(\widehat{A}=\widehat{M}\);\(\widehat{B}=\widehat{N}\);\(\widehat{C}=\widehat{P}\)
\(\Rightarrow\)\(\widehat{A}=40\)độ ;\(\widehat{B}=60\)độ ;\(\widehat{C}=80\)độ
1+1=
ai co nick vioedu ko
cho tớ
cho thì hack à hi