Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
| x + 2 | = 3 - 2x
\(\Rightarrow\left[{}\begin{matrix}x+2=3-2x\\x+2=-\left(3-2x\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+2+2x=3\\x+2+2x=-3\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}3x=5\\3x=-5\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
Vậy x = \(\dfrac{5}{3}\) hoặc x = \(-\dfrac{5}{3}\)
F=|x-1|+|x-2|+|x-3|+...+|x-100|=|x-1|+|2-x|+|x-3|+...+|100-x|
Áp dụng bđt |a|+|b|\(\ge\)|a+b|, ta có:
F=|x-1|+|2-x|+|x-3|+...+|100-x| \(\ge\) |x-1+2-x+x-3+...+100-x| = |50| = 50
=> F\(\ge\)50 => \(Min_F=50\)
P/s: mấy thánh toán đi ngang cho mik hỏi giải vậy có đúng hog?
\(F=\left|x-1\right|+\left|x-2\right|+....+\left|x-99\right|+\left|x-100\right|\)
\(F=\left(\left|x-1\right|+\left|x-100\right|\right)+\left(\left|x-2\right|+\left|x-99\right|\right)+.....+\left(\left|x-50\right|+\left|x-51\right|\right)\)
\(F=\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\)
(do \(\left|-A\left(x\right)\right|=\left|A\left(x\right)\right|\))
Với mọi giá trị của \(x\in R\) ta có:
\(\left|x-1\right|\ge1;\left|x-2\right|\ge x-2;.....;\left|99-x\right|\ge99-x;\left|100-x\right|\ge100-x\)
\(\Rightarrow\left|x-1\right|+\left|100-x\right|\ge x-1+100-x\ge99\)
\(\left|x-2\right|+\left|99-x\right|\ge x-2+99-x\ge97\).............
\(\left|x-50\right|+\left|51-x\right|\ge x-50+51-x\ge1\)
\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge99+97+.....+3+1\)
\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge\dfrac{\left(99+1\right).50}{2}\)
\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge2500\)
Dấu "=" sảy ra khi:
\(\left\{{}\begin{matrix}x-50\ge0\\51-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge50\\x\le51\end{matrix}\right.\Rightarrow50\le x\le51\)
Vậy GTNN của biểu thức F là 2500 đạt được khi và chỉ khi \(50\le x\le51\)
Mình cũng không chắc đâu! Chúc bạn học tốt!!!
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
b: Ta có: Ay//BC
nên \(\widehat{yAC}=\widehat{ACB}\)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{yAC}=\widehat{ABC}\)