K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

a, Trên cùng 1 nữa mặt phẳng bò chứa tia Ox có 

góc XOZ =gócXOY - góc XOZ

hay : góc XOZ= 180-100

              XOZ = 80 độ

b, Vì Om là tia phân giác của góc XOZ

 ⇒ góc XOM = góc MOZ= 80 độ

hay: góc XOM= góc MOZ = 80/2

góc XOM= góc MOZ = 40 độ

⇒XOM= 40 độ 

c, trên cùng một nữa mặt phẳng bờ chứ tia On có 

góc YON= góc NOZ - góc ZOY

hay: góc YON = 180 -100

Góc YON = 80 độ

Có góc NOX= góc XOY- góc NOY

hay:Góc NOX= 180-80

NOX=100 độ

Ta có :

Góc NOM= góc XON+góc XOM

hay NOM=100+40

NOM=140 độ

d, Trên cùng một nữa mặt phẳng bờ chứ tia OX có XOM

=>OX nằm giữa 2 tia OM và ON

  NẾU SAI SỐ THÌ BN THAY NHA !

 

19 tháng 9 2021

ai làm được hứa sẽ k hết(mình cần gấp)

a) Xét ΔOAB vuông tại A và ΔOAC vuông tại A có 

OA chung

\(\widehat{BOA}=\widehat{COA}\)(OA là tia phân giác của \(\widehat{BOC}\))

Do đó: ΔOAB=ΔOAC(cạnh góc vuông-góc nhọn kề)

Suy ra: AB=AC(Hai cạnh tương ứng)

mà B,A,C thẳng hàng(gt)

nên A là trung điểm của BC

Ta có: OA là tia phân giác của \(\widehat{BOC}\)(gt)

nên \(\widehat{BOA}=\dfrac{\widehat{AOB}}{2}=\dfrac{60^0}{2}=30^0\)

Xét ΔOAB vuông tại A có \(\widehat{BOA}=30^0\)(cmt)

mà cạnh đối diện với \(\widehat{BOA}\) là cạnh AB

nên \(AB=\dfrac{1}{2}\cdot OB\)(Định lí tam giác vuông)

hay \(OB=2\cdot AB\)(đpcm)

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.a, chứng minh tam giác AOM=tam giác BOMb. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BDc. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Otbài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm...
Đọc tiếp

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.

a, chứng minh tam giác AOM=tam giác BOM

b. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BD

c. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Ot

bài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm B thuộc tia Oy sao cho OA=OB. qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M. qua B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. gọi H là là giao điểm của AM và BN, I là trung của MN.chứng minh rằng 

a. ON=OM và AN=BM

b. tia OH là tia phân giác của góc xOy

c. đường thẳng qua B // AC cắt tia DN tại N

chứng minh: tam giác ABM=tam giác CNM

0
11 tháng 3 2018

A/
* Xét T/g AOM và T/g BOM có :
+ O= O2 ( Oz là p/g AOB )
+ OAM = OBM ( = 900 )
+ AM chung 
=> t/g AOM = BOM ( ch.gn )
* Xét T/g AMH và T/g BMH có :
+ AM = BM ( T/g AOM= BOM )
+ Góc AMH = BMH ( T/g AOM = BOM )
+ MH chung 
=> T/g AMH = T/g BMH (c.g.c)
=> AH = BH 
* Xét t/g AOH và T/g BOH có :
+ AH = BH ( cmt )
+ OH chung 
+ OA = OB ( T/g AOM = T/g BOM )
=> T/g AOH = T/g BOH (c.c.c)
* Ta có :
+ AH = BH ( cmt ) (1)
+ H= H2 ( T/g AOH = T/g BOH ) (2) 
mà H1 + H2 = 180o ( Kb )
 - (1) , (2) => H1 = H2 = 90o
=> OM là trung trực của đoạn thẳng AB
B/ Xét T/g AMD và T/g BMC có :
+ AM = BM ( T?g AOM = T/g BOM )
+ Góc DAM = CAM ( = 90o )
+ M1 = M2 ( đđ )
=> T/g AMD = T/g BMC ( ch. gn )
=> MD = MC 
=> T/g DMC cân tại D

11 tháng 3 2018


O A D H B C M 2 1 1

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

14 tháng 12 2017

Cho góc xOy nhọn,Ot là phân giác,trên Ox lấy điểm A,trên Oy lấy điểm B,trên Ot lấy điểm H,Chứng minh tam giác OHA = tam giác OHB,tia AH cắt Oy tại M,tia BH cắt Ox tại N,Chứng minh tam giác OAM = tam giác OBN,Chứng minh AB vuông góc OH,Gọi K là trung điểm MN,Chứng minh K thuộc tia Ot,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

chúc bn hok tốt @_@

14 tháng 12 2017

các bạn giúp mik với

20 tháng 4 2018

Bài 1: Cho Ot là tia phân giác của góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ot lấy điểm M sao cho OM>OA.a)CM: ΔAOM=ΔBOMb)Gọi C lá giao điểm của tia AM và tia Oy.D lá trung điểm của BM và Ox. CMR:AC=BDc) Nối A và B, vẽ đường thẳng d vuông góc với ABtại A.CM: d // OtBài2: Cho góc nhọn xOy.Lấy điểm A thuộc tia Ox ,lấy điểm B thuộc tia Oy sao cho OA=OB.Qua A kẻ đường...
Đọc tiếp

Bài 1: Cho Ot là tia phân giác của góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ot lấy điểm M sao cho OM>OA.

a)CM: ΔAOM=ΔBOM

b)Gọi C lá giao điểm của tia AM và tia Oy.D lá trung điểm của BM và Ox. CMR:AC=BD

c) Nối A và B, vẽ đường thẳng d vuông góc với ABtại A.CM: d // Ot

Bài2: Cho góc nhọn xOy.Lấy điểm A thuộc tia Ox ,lấy điểm B thuộc tia Oy sao cho OA=OB.Qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M, qua B vuông góc với Oy cắt Ox tại N. GọiH là giao điểm của AM và BM,I là trung điểm của MN.CMR:

a) ON=OM và AN=BM

b)Tia OH là tia phân giác góc xOy

c) Ba tia điểm O,H,I thẳng hàng

Bài3: Cho ΔABC vuông góc tại A.Gọi M là trung điểm của AC, trên tia đối của tia MB lấy điểm D sao cho MD=MB

a) CM: AD=BC

b) CM: CD vuông góc với AC

c) Đường thẳng qua B song song với AC cắt tia DC tại N. CM:Δ ABM= ΔCNM

1

Bài 3: 

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD=BC

b: Ta có: ABCD là hình bình hành

nên CD//AB

mà AB⊥AC

nên CD⊥AC

c: Xét tứ giác ABNC có 

AB//NC

BN//AC

Do đó: ABNC là hình bình hành

Suy ra: AB=CN

Xét ΔBAM vuông tại A và ΔNCM vuông tại C có

MA=MC

BA=NC

Do đó: ΔBAM=ΔNCM

12 tháng 8 2018