\(y=\left|x\right|+1\) và \(y=2x-3\) rồi tìm tọa độ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

Cách vẽ:

a) y=!x!+1

cho x=0 =>y=1 => A(0,1)

cho x=-6 => y=7 => B(-6,7)

cho x=6=> y=7 => C(6,7)

{A, B, C tùy ý}

nối A--> B và A--> C kéo dài ra => đthị !x! +1

b)y=2x-3

cho x =0 => y=-3 => E(0,-3)

cho y=0 => 0=2x-3=> x=3/2 => D (0,3/2)

nối ED kéo dài ra => đthị y=2x+3

c) xác định nghiệm

điểm giao nhau là N

Từ N kẻ đường vuông góc với Oy hoặc // với ox--> cắt Oy tai yn

Từ N kẻ đường vuông góc với Ox cắt Ox tai xn

Giá trị xn,yn, hay tọa độ điêm N (xn,yn)

nếu vẽ đúng tỷ lệ chuẩn

=>

xn=4

yn=5

Ôn tập toán 8

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x=1-3x\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=1\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{2}{5}\end{matrix}\right.\)

b: Thay x=1/5 và y=2/5 vào y=kx+1, ta được:

1/5k+1=2/5

=>1/5k=-3/5

hay k=-3

a: \(A=2x^2-2xy-y^2+2xy=2x^2-y^2\)

\(=2\cdot\dfrac{4}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)

b: \(B=5x^2-20xy-4y^2+20xy=5x^2-4y^2\)

\(=5\cdot\dfrac{1}{25}-4\cdot\dfrac{1}{4}\)

=1/5-1=-4/5

\(C=x^3+6x^2+12x+8=\left(x+2\right)^3=\left(-9\right)^3=-729\)

d: \(D=20x^3-10x^2+5x-20x^2+10x+4\)

\(=20x^3-30x^2+15x+4\)

\(=20\cdot5^3-30\cdot5^2+15\cdot2+4=1784\)

22 tháng 10 2019

toi ko bt

22 tháng 10 2019

\(x^2+y^2=0\)

Mà \(x^2\ge0;y^2\ge0\)nên \(x^2+y^2\ge0\)

(Dấu "="\(\Leftrightarrow x=y=0\))

AH
Akai Haruma
Giáo viên
5 tháng 9 2020

Lời giải:
a)

\(A=\frac{x^2y(y-x)-xy^2(x-y)}{3y^2-2x^2}=\frac{x^2y(y-x)+xy^2(y-x)}{3y^2-2x^2}=\frac{(xy^2+x^2y)(y-x)}{3y^2-2x^2}\)

\(=\frac{xy(x+y)(y-x)}{3y^2-2x^2}=\frac{xy(y^2-x^2)}{3y^2-2x^2}\)

Với $x=-3; y=\frac{1}{2}$ thì:

$xy=\frac{-3}{2}; x^2=9; y^2=\frac{1}{4}$

Do đó $A=\frac{-35}{46}$

b)
\(B=\frac{(8x^3-y^3)(4x^2-y^2)}{(2x+y)(4x^2-4xy+y^2)}=\frac{(2x-y)(4x^2+2xy+y^2)(2x-y)(2x+y)}{(2x+y)(2x-y)^2}\)

\(=4x^2+2xy+y^2=4.2^2+2.2.\frac{-1}{2}+(\frac{-1}{2})^2=\frac{57}{4}\)