K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Để \(y = 8 \Leftrightarrow \frac{1}{2}{x^2} = 8 \Leftrightarrow {x^2} = 16 \Leftrightarrow x = 4\) hoăc \(x =  - 4\)

b) Vẽ đồ thị y=2x+1:

-Là đồ thị bậc nhất nên đồ thị là đường thẳng đi qua điểm có tọa độ (0; 1) và

(-1; -1)

Vẽ đồ thị \(y = 2{x^2}\)

- Đi qua điểm (1; 2) ; (-1; 2);(0;0)

16 tháng 6 2018

Giải bài tập Toán 10 | Giải Toán lớp 10

NV
15 tháng 7 2021

\(y=\left|x+1\right|+\sqrt{\left(x-2\right)^2}=\left|x+1\right|+\left|x-2\right|\)

\(\Rightarrow\left\{{}\begin{matrix}y=2x-1\text{ với }x\ge2\\y=1-2x\text{ với }x\le-1\\y=3\text{ với }-1\le x\le2\end{matrix}\right.\) 

Từ đó ta có đồ thị hàm số như sau (vẽ 3 đồ thị hàm bậc nhất xác định trên trên ở từng khoảng của chúng)

undefined

Từ đồ thị \(\Rightarrow y_{min}=3\) khi \(-1\le x\le2\)

1: Theo đề, ta có:

-b/2*(-1)=5/2

=>-b/-2=5/2

=>b=5

2: y=-x^2+5x-4

loading...

24 tháng 9 2023

Tham khảo:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = f(x) = {x^2} - 4x + 3\) là một parabol (P1):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2;{y_S} = {2^2} - 4.2 + 3 =  - 1.\)

+ Có trục đối xứng là đường thẳng \(x = 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay lên trên vì \(a = 1 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).

Ta vẽ được đồ thị như hình dưới.

*So sánh với đồ thị hàm số ở Ví dụ 2a:

Giống nhau: Có chung trục đối xứng

Khác nhau:

Điểm đỉnh và giao điểm với trục tung của hai hàm số đối xứng với nhau qua trục Ox.

Bề lõm của (P) xuống dưới còn (P1) quay lên trên.

Nhận xét chung: Hai đồ thị này đối xứng với nhau qua trục Ox.

12 tháng 10 2019

y = |x| - 1 hay

Vậy đồ thị hàm số y = |x| – 1 là hợp của hai nửa:

+ Nửa đồ thị là đường thẳng y = x – 1 trong khoảng (0; +∞).

+ Nửa đồ thị là đường thẳng y = –x – 1 trong khoảng (–∞; 0).

Giải bài 1 trang 41 sgk Đại số 10 | Để học tốt Toán 10

19 tháng 1 2016

Khi m = 2 : y = x + 5

TXĐ : D = R.

Tính biến thiên :

  • a = 1 > 0 hàm số đồng biến trên R.

bảng biến thiên :

x

-∞

 

+∞

y

-∞

+∞

Bảng giá trị :

x

0

-5

y

5

0

Đồ thị hàm số y = x + 5 là đường thẳng đi qua hai điểm A(0, 5) và B(-5; 0).

b/(dm) đi qua điểm A(4, -1) :

4 = (m -1)(-1) +2m +1

<=> m = 2

3. hàm số nghịch biến khi : a = m – 1 < 0 <=> m < 1

4.(dm) đi qua điểm  cố định M(x0, y0) :

Ta được  : y0 = (m -1)( x0) +2m +1 luôn đúng mọi m.

<=> (x0 + 2) m = y0 – 1 + x0(*)

(*) luôn đúng mọi m khi :

x0 + 2= 0 và  y0 – 1  + x0 = 0

<=> x0 =- 2  và  y0 = 3

Vậy : điểm  cố định M(-2, 3)