Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đồ thị hàm số y = 2x - 3 là đường thẳng đi qua hai điểm P(0; - 3) và hình a).
b) Đồ thị hàm số y = √2 là đường thẳng song song với trục hoành đi qua điểm P(0; √2) (hình b).
c) Đồ thị hàm số là đường thẳng. Bởi vì giao điểm của đồ thị với trục tung P(0; 7) với trục hoành có tọa độ tương đối lớn nên ta có thể chọn các điểm thuộc đồ thị có tọa độ nhỏ hơn cho dễ vẽ. Chẳng hạn A(4; 1), B(2; 4). Đồ thị là đường thẳng AB (hình c).
d) y = |x| - 1 = (hình d).
a) Ta có thể viết
\(y=\left\{{}\begin{matrix}2x-3;\left(x\ge\dfrac{3}{2}\right)\\-2x+3;\left(x< \dfrac{3}{2}\right)\end{matrix}\right.\)
a) Bảng biến thiên
Đồ thị hàm số
Đồ thị là đường thẳng đi qua 2 điểm:
+ Giao với trục tung P(0,-1)
+ Giao với trục hoành Q(2, 0)
b) Bảng biến thiên
Đồ thị hàm số
Đồ thị là đường thẳng đi qua 2 điểm:
+ Giao với trục tung P(0,4)
+ Giao với trục hoành Q(2, 0)
c) y=√x2y=x2 = |x| ={−x,x≤0x,x>0{−x,x≤0x,x>0
Bảng biến thiên
Đồ thị hàm số
d) y = |x+1| = {−x−1,x≤−1x+1,x>−1{−x−1,x≤−1x+1,x>−1
Bảng biến thiên
Đồ thị hàm số
Điểm \(\left(1;1\right)\) thuộc đồ thị, điểm \(\left(1;\dfrac{3}{2}\right)\) không thuộc đồ thị .
Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:
\(-3=4a+b\)
Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:
\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)
Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)
b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:
\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)
Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé
Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R
\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)
Chọn các điểm:
x 1 3 -1 2 -2
y 4 0 0 3 -5
Xác định các điểm parapol
\(f\left(x\right)=\dfrac{2}{3}\left(x^2-4x+3\right)=\dfrac{2}{3}\left(x-1\right)\left(x-3\right)=\dfrac{2}{3}\left(x-2\right)^2-\dfrac{2}{3}\)
\(1< x< 3\Rightarrow f\left(x\right)< 0\)
\(\left[{}\begin{matrix}x\le1\\x\ge3\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\ge0\)
\(\left|f\left(x\right)\right|=\left\{{}\begin{matrix}\left\{{}\begin{matrix}f\left(x\right)\\\left[{}\begin{matrix}x\le1\\x\ge1\end{matrix}\right.\end{matrix}\right.\\-f\left(x\right)khi\left\{1< x< 3\right\}\end{matrix}\right.\)
*. đỉnh GTNN.P(2,-2/3)
.Giao với trục hoành A(1,0); B(3,0)
Giao trục tung C(0,2)
Vẽ