K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5

a) y = x + 3

  • Đây là đường thẳng có:
    • Hệ số góc: 1 (đường xiên lên)
    • Giao điểm với trục tung (Oy): (0, 3)
  • Một số điểm dễ vẽ:
    • Khi x = 0 → y = 3 → (0, 3)
    • Khi x = 1 → y = 4 → (1, 4)
    • Khi x = -1 → y = 2 → (-1, 2)

b) y = 2x - 5

  • Hệ số góc: 2 (dốc hơn hàm a)
  • Giao với Oy tại: (0, -5)
  • Một số điểm:
    • x = 0 → y = -5 → (0, -5)
    • x = 1 → y = -3 → (1, -3)
    • x = 2 → y = -1 → (2, -1)

c) y = -1,5x (hay y = -3/2 x)

  • Hệ số góc: -1,5 → đường thẳng nghiêng xuống
  • Giao với Oy tại: (0, 0) (vì không có hằng số)
  • Một số điểm:
    • x = 0 → y = 0 → (0, 0)
    • x = 2 → y = -3 → (2, -3)
    • x = -2 → y = 3 → (-2, 3)
5A. Vẽ đồ thị của các hàm số sau:a) \(y = x + 3\)b) \(y = 2 x - 5\)c) \(y = - 1 , 5 x\)5B. Vẽ đồ thị của các hàm số sau:a) \(y = x - 2\)b) \(y = - 2 x + 4\)c) \(y = \frac{2}{3} x\)6A. Trong các điểm sau, điểm nào thuộc đồ thị hàm số \(y = 3 x - 6\)?\(A \left(\right. 0 ; - 6 \left.\right) ; B \left(\right. - 1 ; - 3 \left.\right) ; C \left(\right. - 2 ; 0 \left.\right) ; D \left(\right. 1 ; - 3 \left.\right)\).6B. Trong các điểm sau, điểm nào...
Đọc tiếp

5A. Vẽ đồ thị của các hàm số sau:

a) \(y = x + 3\)
b) \(y = 2 x - 5\)
c) \(y = - 1 , 5 x\)


5B. Vẽ đồ thị của các hàm số sau:

a) \(y = x - 2\)
b) \(y = - 2 x + 4\)
c) \(y = \frac{2}{3} x\)


6A. Trong các điểm sau, điểm nào thuộc đồ thị hàm số \(y = 3 x - 6\)?

\(A \left(\right. 0 ; - 6 \left.\right) ; B \left(\right. - 1 ; - 3 \left.\right) ; C \left(\right. - 2 ; 0 \left.\right) ; D \left(\right. 1 ; - 3 \left.\right)\).


6B. Trong các điểm sau, điểm nào thuộc đồ thị hàm số \(y = - 2 x + 8\)?

\(M \left(\right. 2 ; 4 \left.\right) ; N \left(\right. 4 ; 0 \left.\right) ; P \left(\right. - 2 ; 4 \left.\right) ; Q \left(\right. 8 ; 0 \left.\right)\).


1A. Xác định hệ số góc của mỗi đường thẳng sau:

a) \(y = 4 x + 1\)
b) \(y = 3 - 1 , 5 x\)
c) \(y = \frac{3}{4} \left(\right. x + 4 \left.\right)\)
d) \(y = \frac{- 2 x + 3}{2}\)


1B. Xác định hệ số góc của mỗi đường thẳng sau:

a) \(y = - 5 x + 7\)
b) \(y = 1 - x\)
c) \(y = 0 , 3 \left(\right. x - 10 \left.\right)\)
d) \(y = \frac{6 x + 1}{3}\)

1

6A: Thay x=0 vào y=3x-6, ta được:

\(y=3\cdot0-6=0-6=-6\)

=>A(0;-6) thuộc đồ thị hàm số y=3x-6

Thay x=-1 vào y=3x-6, ta được:

\(y=3\cdot\left(-1\right)-6=-3-6=-9\) <>-3

=>B(-1;-3) không thuộc đồ thị hàm số y=3x-6

Thay x=-2 vào y=3x-6, ta được:

\(y=3\cdot\left(-2\right)-6=-6-6=-12\) <>0

=>C(-2;0) không thuộc đồ thị hàm số y=3x-6

Thay x=1 vào y=3x-6, ta được:

\(y=3\cdot1-6=3-6=-3\)

=>D(1;-3) thuộc đồ thị hàm số y=3x-6

6B:

Thay x=2 vào y=-2x+8, ta được:

\(y=-2\cdot2+8=-4+8=4\)

=>M(2;4) thuộc đồ thị hàm số y=-2x+8

Thay x=4 vào y=-2x+8, ta được:

\(y=-2\cdot4+8=-8+8=0\)

=>N(4;0) thuộc đồ thị hàm số y=-2x+8

Thay x=-2 vào y=-2x+8, ta được:
\(y=\left(-2\right)\cdot\left(-2\right)+8=4+8=12\) <>4

=>P(-2;4) không thuộc đồ thị hàm số y=-2x+8

Thay x=8 vào y=-2x+8, ta được:

\(y=-2\cdot8+8=-16+8=-8\) <>0

=>Q(8;0) không thuộc đồ thị hàm số y=-2x+8

1A:

a: y=4x+1 nên hệ số góc là a=4

b: y=3-1,5x nên hệ số góc là a=-1,5

c: \(y=\frac34\left(x+4\right)=\frac34x+3\)

=>Hệ số góc là \(a=\frac34\)

d: \(y=\frac{-2x+3}{2}=-x+\frac32\)

=>Hệ số góc là -1

1B:

a: y=-5x+7

=>Hệ số góc là a=-5

b: y=1-x=-x+1

=>Hệ số góc là a=-1

c: y=0,3(x-10)=0,3x-3

=>Hệ số góc là a=0,3

d: \(y=\frac{6x+1}{3}=2x+\frac13\)

=>Hệ số góc là a=2

5A:
a: y=x+3

Bảng giá trị:

x

0

1

y=x+3

3

4

Vẽ đồ thị:

b: y=2x-5

Bảng giá trị

x

0

1

y=2x-5

-5

-3

Vẽ đồ thị

c: y=-1,5x

Bảng giá trị:

x

0

2

y=-1,5x

0

-3

Vẽ đồ thị:

5B:

a: y=x-2

Bảng giá trị:

x

0

1

y=x-2

-2

-1

Bảng giá trị:

b: y=-2x+4

x

0

1

y=-2x+4

4

2

Vẽ đồ thị

c: \(y=\frac23x\)

Bảng giá trị:

x

0

3

y=\(\frac23\) x

0

2

Vẽ đồ thị:

9 tháng 1 2024

16 tháng 7 2018

\(a,\)Vì \(\left|x\right|=\frac{1}{3}\)

\(\Rightarrow x=\orbr{\begin{cases}\frac{1}{3}\\-\frac{1}{3}\end{cases}}\)

Với \(x=\frac{1}{3}\)

\(\Rightarrow y=3.\left(\frac{1}{3}\right)^2-2.\frac{1}{3}+1\)

\(\Rightarrow y=\frac{1}{3}-\frac{2}{3}+\frac{3}{3}\)

\(\Rightarrow y=\frac{2}{3}\)

Với \(x=-\frac{1}{3}\)

\(\Rightarrow y=3.\left(-\frac{1}{3}\right)^2-2.-\frac{1}{3}+1\)

\(\Rightarrow y=\frac{1}{3}+\frac{2}{3}+1\)

\(\Rightarrow y=1+1=2\)

\(b,y=1\)

\(\Rightarrow3x^2-2x+1=1\)

\(\Rightarrow x\left(3x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\3x=2\end{cases}}\)

\(\Rightarrow x=\orbr{\begin{cases}0\\\frac{2}{3}\end{cases}}\)

\(c,\)Tất cả các điểm trên

11 tháng 8 2017

a) Chịu, tự làm

b) \(y=\left|x-1\right|+\left|x-3\right|\)

Áp dụng BĐT, ta có:

\(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)
\(Min_y=2\Leftrightarrow\)\(\left\{{}\begin{matrix}x-1\ge0\\3-x\ge0\end{matrix}\right.\)\(\Leftrightarrow1\le x\le3\)

c) \(y\ge4\)

\(\Leftrightarrow\left|x-1\right|+\left|x-3\right|\ge4\)

Xét khoảng x<1, tự giải

Được tập nghiệm thỏa mãn \(x< 1\)

Xét khoảng \(1\le x< 3\)

Không có tập nghiệm

Xét khoảng \(x\ge3\)

Được tập nghiệm \(x\ge3\)

11 tháng 8 2017

Câu c sai 1 chỗ rồi,bạn xem và sửa nha

12 tháng 9 2023

a)

- Vẽ đồ thị hàm số \(y = 0,5x\)

Cho \(x = 1 \Rightarrow y = 0,5.1 = 0,5\). Ta vẽ điểm \(A\left( {1;0,5} \right)\)

Đồ thị hàm số \(y = 0,5x\) là đường thẳng đi qua điểm \(O\left( {0;0} \right)\) và \(A\left( {1;0,5} \right)\).

- Vẽ đồ thị hàm số \(y =  - 3x\)

Cho \(x = 1 \Rightarrow y =  - 3.1 =  - 3\). Ta vẽ điểm \(B\left( {1; - 3} \right)\)

Đồ thị hàm số \(y =  - 3x\) là đường thẳng đi qua điểm \(O\left( {0;0} \right)\) và \(B\left( {1; - 3} \right)\).

- Vẽ đồ thị hàm số \(y = x\)

Cho \(x = 1 \Rightarrow y = 1\). Ta vẽ điểm \(C\left( {1;1} \right)\)

Đồ thị hàm số \(y = x\) là đường thẳng đi qua điểm \(O\left( {0;0} \right)\) và \(C\left( {1;1} \right)\).

b) Ta thấy cả ba đồ thị đều đi qua gốc tọa độ \(O\left( {0;0} \right)\) nên có dạng \(y = ax\).

- Ở đồ thị a, đồ thị hàm số đi qua điểm \(A\left( {1;2} \right)\) nên ta có: \(2 = a.1 \Rightarrow a = 2\).

Do đó, đồ thị a là đồ thị của hàm số \(y = 2x\).

- Ở đồ thị b, đồ thị hàm số đi qua điểm \(B\left( { - 2;2} \right)\) nên ta có: \(2 = a.\left( { - 2} \right) \Rightarrow a = 2:\left( { - 2} \right) =  - 1\).

Do đó, đồ thị b là đồ thị của hàm số \(y =  - x\).

- Ở đồ thị c, đồ thị hàm số đi qua điểm \(C\left( {2; - 1} \right)\) nên ta có: \( - 1 = a.2 \Rightarrow a = \left( { - 1} \right):2 = \dfrac{{ - 1}}{2}\).

Do đó, đồ thị b là đồ thị của hàm số \(y = \dfrac{{ - 1}}{2}x\).

Bài 1: Rút gọn các biểu thức sau: a) \(3x^2\) - 2x( 5+ 1,5x) +10 b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x) c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\) Bài 2: Tìm x, biết: a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24 b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\) c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\) d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\) Bài 3: Tính giá trị của các...
Đọc tiếp

Bài 1: Rút gọn các biểu thức sau:

a) \(3x^2\) - 2x( 5+ 1,5x) +10

b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x)

c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\)

Bài 2: Tìm x, biết:

a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24

b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\)

c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)

d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\)

Bài 3: Tính giá trị của các biểu thức sau:

a)\(A=x^2\left(x+y\right)-y\left(x^2+y^2\right)+2002\) Với \(x=1;y=-1\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)-\dfrac{11}{20}\) Với \(x=-0,6;y=-0,75\)

Bài 4: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị biến:

a) \(2\left(2x+x^2\right)-x^2\left(x+2\right)+\left(x^3-4x+3\right)\)

b) \(z\left(y-x\right)+y\left(z-x\right)+x\left(y+z\right)-2yz+100\)

c) \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)

Bài 5: Tính giá trị của biểu thức:

a) \(A=\left(x-3\right)\left(x-7\right)-\left(2x-5\right)\left(x-1\right)\) Với \(x=0;x=1;x=-1\)

b) \(B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\) Với \(\left|x\right|=2\)

c) \(C=\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) Với \(x=1;y=1;z=\left|1\right|\)

7
AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)

\(=10-10x=10(1-x)\)

b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)

\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)

\(=-7x^2+7x=7x(1-x)\)

c)

\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)

\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)

\(=\left\{3-x-5[9x-2]\right\}(-2x)\)

\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)

\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)

\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)

b)

\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)

\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)

\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)

\(2x^2+3(x^2-1)=5x(x+1)\)

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x=1-3x\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=1\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{2}{5}\end{matrix}\right.\)

b: Thay x=1/5 và y=2/5 vào y=kx+1, ta được:

1/5k+1=2/5

=>1/5k=-3/5

hay k=-3