Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Ta có: \(x^2-2x-1=\left(\sqrt{2}+1\right)^2-2\left(\sqrt{2}+1\right)-1=0\)
\(\Rightarrow P=\left(x^4-4x^3+4x^2-2\right)^5+\left(x^3-3x^2-x-1\right)^6\)
\(=\left[\left(x^4-2x^3-x^2\right)+\left(-2x^3+4x^2+2x\right)+\left(x^2-2x-1\right)-1\right]^5+\left[\left(x^3-2x^2-x\right)+\left(-x^2+2x+1\right)-2x-2\right]^6\)
\(=\left(-1\right)^5+\left(-2x-2\right)^6\)
Xong
5) Lợi dụng AM-GM :v
\(a^4+a^4+a^4+b^4\ge4a^3b\)
\(b^4+b^4+b^4+a^4\ge4b^3a\)
\(\Rightarrow2a^4+2b^4\ge a^4+a^4+ab^3+a^3b=\left(a^3+b^3\right)\left(a+b\right)\)
\(\Rightarrow P\ge\dfrac{a+b}{2ab}+\dfrac{b+c}{2bc}+\dfrac{c+a}{2ac}=\dfrac{\left(a+b\right)c}{2abc}+\dfrac{\left(b+c\right)a}{2abc}+\dfrac{\left(c+a\right)b}{2abc}=\dfrac{2\left(ab+bc+ca\right)}{2abc}=1\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=3\)
Bài 1 :
a) Cái này cậu tự vẽ được nhé, cũng dễ mà :v tại tớ không biết vẽ trên đây :vvv
b)
*Xét A\(\left(3;\dfrac{9}{10}\right)\)
Thay x = 3 , y = \(\dfrac{9}{10}\) vào đồ thị hàm số , ta có
y = \(\dfrac{1}{10}x^2\)
\(\Rightarrow\dfrac{9}{10}=\dfrac{1}{10}\cdot3^2=\dfrac{9}{10}\)( Đúng )
Vậy điểm A thuộc đồ thị hàm số
*Xét B\(\left(-5;\dfrac{5}{2}\right)\)
Thay x = -5 , y = \(\dfrac{5}{2}\)vào đồ thị hàm số, ta có
\(y=\dfrac{1}{10}x^2\)
\(\Rightarrow\dfrac{5}{2}=\dfrac{1}{10}\cdot\left(-5\right)^2=\dfrac{25}{10}=\dfrac{5}{2}\) (Đúng)
Vậy điểm B thuộc đồ thị hàm số
* Xét \(C\left(-10;1\right)\)
Thay x=-10 ; y = 1 vào đồ thị hàm số, ta có
\(y=\dfrac{1}{10}x^2\)
\(\Leftrightarrow1=\dfrac{1}{10}\cdot\left(-10\right)^2=\dfrac{1}{10}\cdot100=10\) ( Vô lí )
Vậy điểm C không thuộc đồ thị hàm số
Bài 2:
* Xét A \(\left(\sqrt{2};m\right)\)
Thay x = \(\sqrt{2}\) vào đồ thị hàm số, có
y = \(\dfrac{1}{4}x^2=\dfrac{1}{4}\cdot\left(\sqrt{2}\right)^2=\dfrac{1}{4}\cdot2=\dfrac{1}{2}\)
Vậy \(A\left(\sqrt{2};\dfrac{1}{2}\right)\)
* Xét B( \(-\sqrt{2};m\))
Thay x = \(-\sqrt{2}\) vào ĐTHS, có
y= \(\dfrac{1}{4}\cdot\left(-\sqrt{2}\right)^2=\dfrac{1}{4}\cdot2=\dfrac{1}{2}\)
Vậy B\(\left(-\sqrt{2};\dfrac{1}{2}\right)\)
* Xét \(C\left(m;\dfrac{3}{4}\right)\)
Thay y= \(\dfrac{3}{4}\) vào ĐTHS, ta có
\(\dfrac{3}{4}=\dfrac{1}{4}\cdot x^2\)
=> \(x^2=\dfrac{3}{4}:\dfrac{1}{4}=3\)
\(\Rightarrow x=\pm\sqrt{3}\)
Vậy C \(\left(\sqrt{3};\dfrac{3}{4}\right)\) hoặc C\(\left(-\sqrt{3};\dfrac{3}{4}\right)\)
?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương
giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!
Tranh thủ làm 1, 2 bài rồi ăn cơm:
1/ Đặt \(m=n-2008>0\)
\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương
\(\Rightarrow369+2^m\) là số chính phương
m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương
\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)
b/
\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)
\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)
\(\Rightarrow x=y=4\)
Lời giải:
a)
\(y=|x|=\left\{\begin{matrix} \text{x nếu x}\geq 0\\ \text{-x nếu x}< 0\end{matrix}\right.\)
Như vậy, từ phía bên phải của trục tung (tức là vùng mà $x\geq 0$, ta vẽ đồ thị $y=x$, từ phía bên trái của trục tung (tức vùng mà $x< 0$, ta vẽ đồ thị $y=-x$
b) Xét TH tương tự với $y=|2x+1|$
c)
Xét các TH sau:
\(x\geq 3\) thì \(y=x-1+x-3=2x-4\)
\(x<1\) thì \(y=1-x+3-x=4-2x\)
\(1\leq x< 3\): \(y=x-1+3-x=2\)
Bây giờ ta chia khoảng để vẽ đồ thị thôi
Khoảng từ \(x\geq 3\) đổ đi vẽ đths \(y=2x-4\)
Khoảng từ \(1\leq x<3\) vẽ đường thẳng $y=2$
Khoảng $x< 1$ đổ về sau: vẽ đths $y=4-2x$