Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số đo góc A:
180-35-55=90 (độ)
Vì: tam giác ABC có 1 trong 3 góc tạo thành có 1 góc bằng 90 độ.
=> Tam giác ABC là tam giác vuông tại đỉnh A.
a) Hai tam giác ABD và HBD có :
+ Chung BD
+ Góc ABD = Góc HBD(gt)
+ BA = BH (gt)
Vậy hai tam giác trên bằng nhau theo trường hợp c.g.c
b) Vì tam giác ABD = tam giác HBD nên ta suy ra được góc BAD = góc BHD = 90 độ
Hay HD vuông góc BC
c)
góc C = 60 độ
=> góc ABC = 30 độ
góc ABD = 30 độ / 2 = 15 độ (BD phân giác)
Vậy góc ADB = 90 độ - 15 độ = 75 độ
a ) Ta có :
+) \(AB< AC\) ( gt )
\(\Rightarrow ACB< ABC\) ( quan hệ gữa góc và cạnh đối diện )
+ ) \(ABH+BAH+AHB=180\)( tổng ba góc trong một tam giác )
\(\Rightarrow ABH+60+90=180\)
\(\Rightarrow ABH=30\)
b ) Ta có :\(AD\)là phân giác góc \(A\) ( gt )
\(\Rightarrow BAD=CAD=\frac{BAC}{2}=\frac{60}{2}=30\)
Mà \(ABH=30\) ( cmt )
\(\Rightarrow ABH=BAD\)
\(\Rightarrow ABH=BAI\)
Xét tam giác \(AIB\) và tam giác \(BHA\) có :
\(AB\) chung
\(AIB=BHA=90\)
\(BAI=ABH\)
\(\Rightarrow\) tam giác \(AIB\) \(=\) tam giác \(BHA\) ( g - c - g )
c ) Xét tam giác \(ABI\) có :
\(ABI+BAI+AIB=180\)( tổng ba góc trong một tam giác )
\(\Rightarrow ABI+30+90=180\)
\(\Rightarrow ABI=60\)
\(\Rightarrow ABE=60\) ( 1 )
Xét tam giác \(ABE\) có :
\(ABE+BAE+AEB=180\) ( tổng ba góc trong một tam giác )
\(\Rightarrow60+60+AEB=180\)
\(\Rightarrow AEB=60\) ( 2 )
Mà \(BAE=60\) ( gt ) ( 3 )
Từ ( 1 ) ; ( 2 ) ; ( 3 )
\(\Rightarrow\) tam giác \(ABE\) đều
Chứng minh câu d:
A B C D H E I 1
Ta có: AE = AB < AC
=> E thuộc canh AC
\(\Delta\)ABE đều mà AD vuông BE tại I => AD là đường trung trực của DE => DB = DE (1)
Dễ chứng minh \(\Delta\)ABD = \(\Delta\)AED
=> ^ABD = ^AED => ^B1 = ^DEC ( góc ngoài )
mà ^B1 là góc ngoài của \(\Delta\)ABC tại B => ^B1 > ^C
=> ^DEC > ^C = ^ECD
Xét trong \(\Delta\)DEC có: ^DEC > ^ECD => DC > DE (2)
Từ (1); (2) => DC > DB
Hướng dẫn bạn làm nhé, bài này cũng đơn giản thôi :P
a/ \(\Delta ABD=\Delta ACD\left(c.g.c\right)\)
b/ \(\Delta AHD=\Delta AKD\left(canhhuyen...gocnhon\right)\)
\(\Rightarrow HD=KD\)
c/ tự làm
Xét tam giác ABC
Có: A+B+C=180
Hay:\(100^0+B+C=180^0\)
Vậy: \(B+C=80^0\)
\(B=\left(80+20\right):2=50^0\)
\(C=50^0-20^0=30^0\)
Ta có hình vẽ:
B A C E F K D
a/ Trong tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
hay 900 + góc B + 400 = 1800
=> góc ABC = 500
Ta có: \(\widehat{ABD}\)=\(\widehat{DBC}\)=\(\frac{1}{2}\widehat{ABC}\)= \(\frac{1}{2}\)500 = 250
Vậy góc ABD = 250
b/ Xét tam giác ABD và tam giác EBD có:
\(\widehat{ABD}=\widehat{DBE}\) (GT)
BD: chung
AB = EB (GT)
Vậy tam giác ABD = tam giác EBD (c.g.c)
Ta có: tam giác ABD = tam giác EBD
=> \(\widehat{A}=\widehat{E}=90^0\) hay DE \(\perp\)BC (đpcm)
c/ Xét tam giác ABC và tam giác EBF có:
\(\widehat{B}\): góc chung
BA = BE (GT)
góc A = góc E = 900 (đã chứng minh trên)
=> tam giác ABC = tam giác EBF
(trường hợp cạnh huyền góc nhọn)
d/ Xét tam giác BFK và tam giác BCK có:
BK: cạnh chung
\(\widehat{FBK}=\widehat{CBK}\) (GT)
BF = BC (tam giác ABC = tam giác EBF)
=> tam giác BFK = tam giác BCK (c.g.c)
=> \(\widehat{BKF}\)=\(\widehat{BKC}\) (2 góc tương ứng)
Mà góc BKC = 900 (do CK\(\perp\)BD) => góc BKF = 900
Ta có: \(\widehat{FKC}=\widehat{BKF}+\widehat{BKC}=90^0+90^0=180^0\)
hay K,F,C thẳng hàng
d) ta có tam giác ABC = tam giác EBF ( theo c)
=> BC = BF ( 2 cạnh tương ứng)
Xét tam giác BKC và tam giác BKF có:
BC = BF ( gt )
BK chung
KBK = FBC ( gt)
=> tam giác BKC = tam giác BKF ( c.g.c )
=> BKC = BKF ( 2 góc tương ứng)
=> BKC + BKF = 180°( 2 góc kề bù)
=> BKC = BKF = 180° : 2 = 90° = FKC
vậy 3 điểm F,K,C thẳng hàng
Góc C= 35°
Vì tổng của tam giác là 180° mà góc A=90(góc vuông) góc B lại =55° nên góc C= 180_(90+55)=35