Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Góc C= 35°
Vì tổng của tam giác là 180° mà góc A=90(góc vuông) góc B lại =55° nên góc C= 180_(90+55)=35
1/ Ta có: tam giác ABC = tam giác DEF
=> góc A = góc D
góc B = góc E
góc C = góc F
Ta có: góc A + góc B + góc C = 1800
1300 + góc C = 1800
góc C = 1800-1300 = 500
Ta có: góc A + góc B = 1300
góc A + 550 = 1300
góc A = 1300 - 550 =750
Vậy góc A = góc D = 750
góc B = góc E = 550
góc C = góc F = 500
2/ Ta có: tam giác DEF = tam giác MNP
=> DE = MN
EF = NP
FD = PM
Ta có: EF + FD = 10 cm
Mà NP - MP = EF - FD = 2 cm
EF = (10 + 2) : 2 = 6 (cm)
FD = (10 - 2) : 2 = 4 (cm)
Vậy DE = MN = 3 cm
EF = NP = 6 cm
FD = MP = 4 cm
1) Ta có: ( \(\widehat{A}\) + \(\widehat{B}\)) + \(\widehat{C}\) = 180o
hay 130o + \(\widehat{C}\) = 180o
\(\Rightarrow\) \(\widehat{C}\) = 180o - 130o = 50o
Vì ΔABC = ΔDEF nên ta có:
\(\widehat{C}\) = \(\widehat{F}\) = 50o
\(\widehat{E}\) = \(\widehat{B}\) = 55o
Ta có: \(\widehat{A}\) + \(\widehat{B}\) = 130o hay \(\widehat{A}\) + 55o = 130o
\(\Rightarrow\) \(\widehat{A}\) = 130o - 55o = 75o
\(\Leftrightarrow\) \(\widehat{A}\) = \(\widehat{D}\) = 75o
Vậy: \(\widehat{A}\) = \(\widehat{D}\) = 75o
\(\widehat{B}\) = \(\widehat{E}\) = 55o
\(\widehat{C}\) = \(\widehat{F}\) = 50o
2) ΔDEF = ΔMNP nên:
\(\Rightarrow\) DE = MN
EF = NP
FD = PM
Ta có: EF + FD = 10cm
mà ΔDEF = ΔMNP
\(\Rightarrow\) NP - MP = EF - FD = 2cm
\(\Rightarrow\) EF = \(\frac{10+2}{2}\) = 6cm
FD = 6cm - 2cm = 4cm
Vậy: DE= MN = 3cm
EF = NP = 6cm
FD = PM = 4cm
a) \(\Delta AHB\)và \(\Delta AHC\)có :
\(AB=AC\)( vì \(\Delta ABC\)là tam giác cân )
\(AH\)là cạnh chung
\(BH=CH\)( vì H là trung điểm của BC )
Do đó : \(\Delta AHB=\Delta AHC\left(c-c-c\right)\)
bn ơi mk xl nha, mk ko biết vẽ hình trên olm!!!
\(\Delta ABC\)cân tại \(A\) có \(H\)là trung điểm \(BC\)
\(\Rightarrow\)\(AH\)là trung tuyến đồng thời là đường cao
\(\Rightarrow\)\(AH\perp BC\)
\(\Rightarrow\)\(\widehat{AHB}=\widehat{AHC}=90^0\)
Xét 2 tam giác vuông: \(\Delta AHB\)và \(\Delta AHC\)có:
\(AB=AC\)(gt)
\(\widehat{ABH}=\widehat{ACH}\) (gt)
suy ra: \(\Delta AHB=\Delta AHC\) (ch_gn)
a) Hai tam giác ABD và HBD có :
+ Chung BD
+ Góc ABD = Góc HBD(gt)
+ BA = BH (gt)
Vậy hai tam giác trên bằng nhau theo trường hợp c.g.c
b) Vì tam giác ABD = tam giác HBD nên ta suy ra được góc BAD = góc BHD = 90 độ
Hay HD vuông góc BC
c)
góc C = 60 độ
=> góc ABC = 30 độ
góc ABD = 30 độ / 2 = 15 độ (BD phân giác)
Vậy góc ADB = 90 độ - 15 độ = 75 độ
Số đo góc A:
180-35-55=90 (độ)
Vì: tam giác ABC có 1 trong 3 góc tạo thành có 1 góc bằng 90 độ.
=> Tam giác ABC là tam giác vuông tại đỉnh A.
ta có góc B + góc C +góc A = 180 độ
=> góc A =180 độ - góc B - góc C
= 180 độ - 35 độ - 55 độ
= 90 độ
Vậy tam giác ABC là tam giác vuông