K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2020

Tự vẽ hình

a,Có \(\widehat{cAe}+\widehat{cAd}=180^{o^{ }}\)(Vì kề bù)

Vì Ad là p/g \(\widehat{cAe}\Rightarrow A_1=A_2=\frac{\widehat{cAe}}{2}=\frac{120^o}{2}=60^o\)

b,Ta có:\(A_1+bAd=180^o\)(vì kề bù)

\(\Rightarrow\widehat{bAd}=120^o\)

\(\Rightarrow bAd>bAc\left(120^o>60^o\right)\)

Mà \(\widehat{bAd}=2.\widehat{bAc}\)

=>Ac là p/g \(\widehat{bAd}\)

c, có \(\widehat{cAe}+A_4=180^o\)(vì kề bù)

\(\Rightarrow A_4=60^o\)

Có:\(\widehat{bAg}+A_4=180^o\)

\(\Rightarrow\widehat{bAg}=120^o\)

Vì Ah là p/g\(\widehat{bAg}\Rightarrow A_5=\widehat{bAg}\div2=60^o\)

TA có:\(\widehat{A_1}+A_4+A_5=60^o+60^o+60^o=180^o\)

\(\Rightarrow\widehat{dAh}=180^o\)

=>2 tia Ad và Ah đối nhau

13 tháng 5 2019

A b e c d g h 1 2 3 4 5

a, Có ^cAe + ^cAd = 180o (kề bù) => ^cAe = 120o

b,Vì Ad là p/g ^cAe => ^A1 = ^A2 = \(\frac{\widehat{cAe}}{2}=\frac{120^o}{2}=60^o\)

Ta có : \(\widehat{A_1}+\widehat{bAd}=180^o\)(Kề bù)

\(\Rightarrow\widehat{bAd}=120^o\)

\(\Rightarrow\widehat{bAd}>\widehat{bAc}\left(120^o>60^o\right)\)

Mà ^bAd = 2.^bAc 

=> Ac là p/g ^bAd

c,Có ^cAe + ^A4 = 180o (kề bù)

=> ^A4 = 60o

Có ^bAg + ^A4 = 180 (kề bù)

=>^bAg = 120o

Vì AH là p/g ^bAg => ^A5 = ^bAg : 2 = 60o

Ta có \(\widehat{A_1}+\widehat{A_4}+\widehat{A_5}=60^o+60^o+60^o=180^o\)

=> ^dAh = 180o

=> 2 tia Ad và Ah đối nhau

a) Ta có: \(\widehat{BAC}+\widehat{EAC}=180^0\)(hai góc kề bù)

\(\Leftrightarrow\widehat{EAC}+60^0=180^0\)

hay \(\widehat{EAC}=120^0\)

Vậy: \(\widehat{EAC}=120^0\)

b)

Ta có: AD là tia phân giác của \(\widehat{CAE}\)(gt)

nên \(\widehat{EAD}=\widehat{CAD}=\dfrac{\widehat{EAC}}{2}=\dfrac{120^0}{2}=60^0\)

Ta có: \(\widehat{EAD}+\widehat{BAD}=180^0\)(hai góc kề bù)

\(\Leftrightarrow\widehat{BAD}+60^0=180^0\)

hay \(\widehat{BAD}=120^0\)

Trên cùng một nửa mặt phẳng bờ chứa tia AB, ta có: \(\widehat{BAC}< \widehat{BAD}\left(60^0< 120^0\right)\)

nên tia AC nằm giữa hai tia AB và AD

Ta có: tia AC nằm giữa hai tia AB và AD(cmt)

mà \(\widehat{BAC}=\widehat{DAC}\left(=60^0\right)\)

nên AC là tia phân giác của \(\widehat{BAC}\)(Đpcm)

 

a) Ta có: góc BAC + góc EAC =180\(^0\)(kề bù)

                            suy ra góc EAC= 120\(^0\)

Vì Ad là tia phân giác của \(\widehat{CAe}\) nên \(\widehat{CAE}\)= \(\widehat{DAE}\)

          mà \(\widehat{CAD}\)+\(\widehat{DAE}\)=\(\widehat{EAC}\)

\(\widehat{CAD}\) = \(\widehat{DAE}\)= \(\widehat{\frac{EAC}{2}}\)=\(\frac{120^0}{2}\)=60\(^0\)

 mà \(\widehat{BAC}\)= 60 \(^0\)\(\widehat{BAC}\)=\(\widehat{CAD}\) =60\(^0\)⇒AC là tia phân giác của \(\widehat{bAd}\)(ĐPCM)

b) Ta có : \(\widehat{CAE}\)+\(\widehat{EAG}\)=180 \(^0\) (kề bù )

 suy ra\(\widehat{EAG}\)=60 \(^0\)

\(\widehat{BAG}\)+ \(\widehat{EAG}\)=180 \(^0\)( KB)

 suy ra \(\widehat{BAG}\) =120 \(^0\)

Vì AB là tia phân giác của \(\widehat{BAG}\)  suy ra \(\widehat{GAb}\) = \(\frac{\widehat{BAG}}{2}\) =60\(^0\)

Ta có \(\widehat{EAD}\)+\(\widehat{BAd}\)+\(\widehat{EAG}\)=180\(^0\)

 suy ra \(\widehat{BAd}\)=180\(^0\)

  Tia Ad,Ab là 2 tia đối nhau (ĐPCM)

(Bài toán vẫn có 1 số lỗi nhỏ, hình cậu tự vẽ nha, vẽ trên đây không đúng 100%) Học tốt!

a) Ta có : \(\widehat{BAC}\)\(\widehat{EAC}\)\(=180^0\)(Kề bù)

 Suy ra: \(\widehat{EAC}\)\(=120^0\)

Vì Ad là tia phân giác của \(\widehat{CAe}\)nên \(\widehat{CAD}\)\(=\widehat{DAE}\)

Mà \(\widehat{CAD}\)\(+\widehat{DAE}\)\(=\widehat{EAC}\)

\(\Rightarrow\widehat{CAD}+\widehat{DAE}=\)\(\widehat{\frac{EAC}{2}}\)\(=\frac{120^0}{2}=60^0\)

Mà \(\widehat{BAC}=60^0\Rightarrow\widehat{BAC}=\widehat{CAD}\Rightarrow AC\)là tia phân giác của \(\widehat{bAd}\)(ĐPCM)

B) Ta có: \(\widehat{CAE}+\widehat{EAG}=180^0\)(Kề bù)

\(\Rightarrow\widehat{EAG}=60^0\)

Ta có \(\widehat{BAG}+\widehat{EAG}=180^0\)

         \(\widehat{BAG}+60^0=180^0\)

          \(\widehat{BAG}=180^0-60^0\)

         \(\widehat{BAG}=120^0\)

Vậy \(\widehat{BAG}=120^0\)

Vì AB là tia phân giác của \(\widehat{BAG}\)

Nên: \(\widehat{GAb}=\frac{\widehat{BAG}}{2}=\frac{120^0}{2}=60^0\)

Ta có: \(\widehat{EAD}+\widehat{BAb}+\widehat{EAG}=180^0\)

\(\Rightarrow\widehat{bAd}=180^0\)

Suy ra: Tia Ad và Ab là 2 tia đối nhau (ĐPCM)

[Bạn tự vẽ hình nha ( trong bài vẫn còn vài lỗi, xem kĩ nha)]

27 tháng 6 2018

Mình ko dùng dấu góc và độ nên bạn tự thêm vào 
a) Trên cùng 1 nữa mặt phẳng bờ chứa tia Ox , có :
         xOy = 40 ; xOz = 80
=> xOy < xOz ( vì 40 < 80 )
=> Tia Oy nằm giữa 2 tia Ox và Oz
=> xOy + yOz = xOz
Thay xOy = 40 ; xOz = 80
=> 40 + yOz = 80
=>         yOz = 80 - 40
=>         yOz = 40

Có xOy = 40 
      yOz = 40 
=> xOy = yOz = 40
Vậy Oy là tia phân giác của góc xOz vì :
  - xOy = yOz = 40
  - Tia Oy nằm giữa 2 tia Ox và Oz

b ) Vì On là tia đối của Ox
=> xOz kề bù nOz
=> xOz + zOn = 180
Thay xOz = 80
=> 80   + zOn = 180
=>           zOn = 180 - 80
=>           zOn = 100

Vì Ot là tia p/giác của zOn
=> zOt = tOn = zOn / 2 
Thay zOn = 100
=> zOt = tOn = 100/2 = 50
Có Oy là tia p/giác của xOz 
     Ot là tia p/giác của zOn
      xOz kề bù zOn
=> Tia Oz nằm giữa 2 tia Ot và Oy
=> yOz + zOt = yOt
Thay yOz = 40 ; zOt = 50
=> 40 + 50 = yOt
=> 90 = yOt
=> yOt = 90
=> yOz phụ zOt

18 tháng 4 2019

cái chỗ Ox' và Ox khác gì nhau không bạn

18 tháng 4 2019

Nếu khác thì mình làm được