Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(3+1\sqrt{6}-\sqrt{33}\right)\left(\sqrt{22}+\sqrt{6}+4\right)\)
\(=\sqrt{3}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right).\sqrt{2}\left(\sqrt{11}+\sqrt{3}+2\sqrt{2}\right)\)
\(=\sqrt{6}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right)\left(\sqrt{3}+2\sqrt{2}+\sqrt{11}\right)\)
\(=\sqrt{6}\left[\left(\sqrt{3}+2\sqrt{2}\right)^2-11\right]=\sqrt{6}\left(11+4\sqrt{6}-11\right)=\sqrt{6}.4\sqrt{6}=6.4=24\)
b) \(\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)=\left(\frac{5+2\sqrt{6}+10-4\sqrt{6}}{5^2-\left(2\sqrt{6}\right)^2}\right)\left(15+2\sqrt{6}\right)\)
\(=\left(15-2\sqrt{6}\right)\left(15+2\sqrt{6}\right)=15^2-24=201\)
C) \(\left(\frac{4}{3}.\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\right)\)
\(=\left(\frac{4}{\sqrt{3}}+\frac{\sqrt{6}}{\sqrt{3}}+\frac{\sqrt{10}}{\sqrt{3}}\right)\left(\frac{\sqrt{6}}{\sqrt{5}}+\frac{\sqrt{10}}{\sqrt{5}}-\frac{4}{\sqrt{5}}\right)\)
\(=\frac{1}{\sqrt{15}}\left(\sqrt{6}+\sqrt{10}+4\right)\left(\sqrt{6}+\sqrt{10}-4\right)=\frac{1}{\sqrt{15}}\left[\left(\sqrt{6}+\sqrt{10}\right)^2-16\right]\)
\(=\frac{1}{\sqrt{15}}\left(16+4\sqrt{15}-16\right)=\frac{4\sqrt{15}}{\sqrt{15}}=4\)
d) \(\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1990+2\sqrt{1989}}=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1989+2\sqrt{1989}+1}\)
\(=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{\left(\sqrt{1989}+1\right)^2}=\left(\sqrt{1989}-1\right)\left(\sqrt{1989}+1\right)=1989-1=1988\)
e) \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\sqrt{2}\cdot\sqrt{7-\sqrt{6}}\)
\(=\sqrt{2\cdot\left(7-\sqrt{6}\right)}\)
\(=\sqrt{14-2\cdot\sqrt{6}}\)
b) \(\sqrt{5-2\cdot\sqrt{6}}-\sqrt{5+2\cdot\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}-\sqrt{3}+\sqrt{2}\)( VÌ \(\sqrt{3}>\sqrt{2}>0\))
\(=0\)
Mình làm hơi tắt nha !!
![](https://rs.olm.vn/images/avt/0.png?1311)
a, phân tích vế trái ta được:
11+6\(\sqrt{2}\)=9+2.3.\(\sqrt{2}\)+2=(3+\(\sqrt{2}\))2\(\)=VP(dpcm)
b,phân tích vế trái ta được
\(\sqrt{11+6\sqrt{ }2}\)+\(\sqrt{11-6\sqrt{ }2}\)=|3+\(\sqrt{2}\)|+|3-\(\sqrt{2}\)|=6=VP(dpcm)
a,phân tích vế trái ta được
8-2\(\sqrt{7}\)=7-2\(\sqrt{7}\)+1=(\(\sqrt{7}\)-1)2
câu b sai đề nha
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐẶT \(A=\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}+\sqrt{6}\)
\(\Rightarrow\sqrt{2}A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}+2\sqrt{3}\)
\(\Leftrightarrow\sqrt{2}A=\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}+2\sqrt{3}\)
\(\Leftrightarrow\sqrt{2}A=\left|\sqrt{3}-\sqrt{5}\right|-\left|\sqrt{3}+\sqrt{5}\right|+2\sqrt{3}\)
\(\Leftrightarrow\sqrt{2}A=\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{5}+2\sqrt{3}=0\Rightarrow A=0\)
VẬY A = 0
![](https://rs.olm.vn/images/avt/0.png?1311)
A=\(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}=\frac{\sqrt{3}+3+\sqrt{2}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{5}+1-\sqrt{7+2\sqrt{10}}}\)=\(\frac{\sqrt{2}\left(\sqrt{3}+3+\sqrt{2}-\sqrt{5+2\sqrt{6}}\right)}{\sqrt{2}\left(\sqrt{2}+\sqrt{5}+1-\sqrt{7+2\sqrt{10}}\right)}\)
A=\(\frac{\sqrt{6}+3\sqrt{2}+2-\sqrt{10+4\sqrt{6}}}{2+\sqrt{10}+\sqrt{2}-\sqrt{14+4\sqrt{10}}}=\frac{\sqrt{6}+3\sqrt{2}+2-\sqrt{6}-2}{2-\sqrt{10}+\sqrt{2}-\sqrt{10}-2}=\frac{3\sqrt{2}}{\sqrt{2}}=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\sqrt{11-2\sqrt{10}}+\sqrt{9-2\sqrt{4}}-\sqrt{10}-\sqrt{7}\)
\(=\sqrt{\left(\sqrt{10}-1\right)^2}+\sqrt{5}-\sqrt{10}-\sqrt{7}=\sqrt{10}-1+\sqrt{5}-\sqrt{10}-\sqrt{7}\)
\(=\sqrt{5}-\sqrt{7}-1\)
\(VT=\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}\)
\(\sqrt{2}VT=\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}\)
\(=\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-1\right)^2}=\left|\sqrt{11}+1\right|-\left|\sqrt{11}-1\right|\)
\(=\sqrt{11}+1-\sqrt{11}+1=2\)
\(\Rightarrow VT=\frac{2}{\sqrt{2}}=\sqrt{2}=VP\)( đpcm )