![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đơn thức: \(2xy^2;\dfrac{x}{3y};5\)
b) Đa thức: \(2x+3y;\dfrac{x-1}{x+1};x^3y^2-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: P(110110) = 5x + 1212 = 5 . 110110 + 1212 = 1212 + 1212 = 1 ≠ 0
Vậy x = 110110 không là nghiệm của P(x).
b) Ta có: Q(1) = 12 - 4.1 + 3 = 1 - 4 + 3 = 0 => x = 1 là nghiệm của Q(x)
Q(3) = 32 - 4.3 + 3 = 9 - 12 + 3 = 0
Vậy x = 1; x = 3 là nghiệm của Q(x).
a) Ta có: P(110110) = 5x + 1212 = 5 . 110110 + 1212 = 1212 + 1212 = 1 ≠ 0
Vậy x = 110110 không là nghiệm của P(x).
b) Ta có: Q(1) = 12 - 4.1 + 3 = 1 - 4 + 3 = 0 => x = 1 là nghiệm của Q(x)
Q(3) = 32 - 4.3 + 3 = 9 - 12 + 3 = 0
Vậy x = 1; x = 3 là nghiệm của Q(x).
![](https://rs.olm.vn/images/avt/0.png?1311)
1.\(A=-\dfrac{3}{4}x^2yz;B=\dfrac{1}{3}xy^2;C=-\dfrac{8}{7}xy^2\)
\(A.\left(B+C\right)=-\dfrac{3}{4}x^2yz\left[\dfrac{1}{3}xy^2+\left(-\dfrac{8}{7}xy^2\right)\right]\)
\(=-\dfrac{3}{4}x^2yz\left(\dfrac{1}{3}xy^2-\dfrac{8}{7}xy^2\right)\)
\(=\left(-\dfrac{3}{4}x^2yz\right)\dfrac{1}{3}xy^2-\left(-\dfrac{3}{4}x^2yz\right)\dfrac{8}{7}xy^2\)
\(=-\dfrac{1}{4}x^3y^3z+\dfrac{6}{7}x^3y^3z\)
1. Ta có: \(-\dfrac{3}{4}x^2yz;B=\dfrac{1}{3}xy^2;C=-\dfrac{8}{7}xy^2\)
\(B+C=\dfrac{1}{3}xy^2-\dfrac{8}{7}xy^2=-\dfrac{17}{21}xy^2\)
\(A.\left(B+C\right)=\left(-\dfrac{3}{4}x^2yz\right).\left(-\dfrac{17}{21}xy^2\right)\)
\(\Rightarrow A.\left(B+C\right)=\dfrac{17}{28}x^3y^3z\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(P=\dfrac{-2}{3}\cdot\dfrac{1}{2}x^3y^2\cdot x^2y^5=\dfrac{-1}{3}x^5y^7\)
Hệ số là -1/3
Phần biến là \(x^5;y^7\)
b: Khi x=-1 và y=1 thì \(P=\dfrac{-1}{3}\cdot\left(-1\right)^5\cdot1^7=\dfrac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(P=\left(\frac{-2}{3}x^3y^2\right)\left(\frac{1}{2}x^2y^5\right)\)
\(P=\left(\frac{-2}{3}.\frac{1}{2}\right)\left(x^3.x^2\right)\left(y^2.y^5\right)\)
\(P=\frac{-1}{3}x^5y^7\)
b, Giá trị của \(P=\frac{-1}{3}x^5y^7\) tại: \(x=-1;y=1\)
\(P=\frac{-1}{3}.\left(-1\right)^5.1^7\)
\(P=\frac{1}{3}\)
Vậy....
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{8}{3a}xyz\)và \(\frac{9a}{10}xyz\)đều là các đơn thức
Vì cả hai đơn thức \(\frac{8}{3a}\)và \(\frac{9a}{10}xyz\)đều có chung phần biến \(xyz\)
=> Bậc của cả hai đơn thức trên là : 1 + 1 + 1 = 3
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(A=\dfrac{-1}{2}x^2y\cdot\dfrac{3}{2}xy=-\dfrac{3}{4}x^3y^2\)
\(B=x^2y^2\cdot y=x^2y^3\)
\(C=-\dfrac{1}{8}y^3x^2=-\dfrac{1}{8}x^2y^3\)
\(D=-x^2y^2\cdot\dfrac{-2}{3}x^3y=\dfrac{2}{3}x^5y^3\)
Các đa thức đồng dạng là B và C
b: \(\left\{{}\begin{matrix}-\dfrac{3}{4}x^3y^2>0\\-\dfrac{1}{8}x^2y^3>0\\\dfrac{2}{3}x^5y^3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^3< 0\\y^3< 0\\xy>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\)
\(\dfrac{1}{y}\) không gọi là đơn thức
chắc là ko