Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do gia tốc a vuông pha với vận tốc v, nên ta có: \((\frac{a}{a_{max}})^2+(\frac{v}{v_{max}})^2 =1\) \(\Rightarrow (\frac{a}{\omega^2 A})^2+(\frac{v}{\omega A})^2=1\) \(\Rightarrow \frac{v^2}{\omega ^2}+\frac{a^2}{\omega ^4} = A^2\)
Đáp án C
Phương pháp : Sử dụng hệ thức đôc lập với thời gian của vận tốc và gia tốc
Hệ thức đúng: v 2 ω 2 + a 2 ω 4 = A 2
Đáp án C
+ Sử dụng công thức độc lập cho hai đại lượng vuông pha
v v max 2 + a a max 2 = 1 ↔ v ω A 2 + a ω 2 A 2 = 1 hay v 2 ω 2 + a 2 ω 4 = A 2
Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)
Đáp án D
+ Với hai đại lượng vuông pha, ta có:
v ωA 2 + a ω 2 A 2 = 1 → m v 2 A 2 + m 2 a 2 A 2 = 1 → A 2 = m v 2 + ma 2
+ Biểu diễn dao động điều hoà bằng véc tơ quay.
M N O A -A A√3/2 60 0
Trong 1/60s đầu tiên ứng với véc tơ quay từ M đến N, góc quay dễ dàng tìm được là 600.
Thời gian \(t=\dfrac{60}{360}T=\dfrac{1}{60}\Rightarrow T = 0,1s\)
\(\Rightarrow \omega = 2\pi/T=20\pi (rad/s)\)
Áp dụng công thức độc lập: \(A^2=x^2+\dfrac{v^2}{\omega^2}\Rightarrow A^2=2^2+\dfrac{(40\pi\sqrt 3)^2}{20\pi}\)
\(\Rightarrow A = 4cm\)
Pha ban đầu ứng với véc tơ quay tại M \(\Rightarrow \varphi = -\dfrac{\pi}{2} (rad/s)\)
Vậy: \(x=4\cos(20\pi t -\dfrac{\pi}{2}) (cm)\)
Vật đi từ li độ x =0 theo chiều dương đến li độ x = \(A\sqrt{3}/2\) như hình vẽ.
Cung quay được tương ứng có màu đỏ và bằng \(\phi = 90- \varphi = 60^0.\) (vì \(\cos\varphi = \frac{A\sqrt{3}/2}{A}= \frac{\sqrt{3}}{2} \Rightarrow \varphi = 30^0. \))
Thời gian quay là \(t = \frac{\pi/3}{\omega} = \frac{1}{60} \Rightarrow \omega = \pi/3:\frac{1}{60}=20\pi. \)(rad/s).
ADCT mối quan hệ giữa li độ, vận tốc tại li độ đó và biên độ
\(A^2 = x^2 + \frac{v^2}{\omega}=2^2+\frac{40^2\pi^2\sqrt{3}^2}{20^2\pi^2} = 16.\)
=> A = 4cm.
Do vật đi từ x = 0 theo chiều dương nên hình vào hình tròn va thấy \(\varphi = -\frac{\pi}{2}.\)
=> \(x = 4 \cos (20\pi t - \frac{\pi}{2}).\)
Đáp án C
Phương pháp : Sử dụng hệ thức độc lập với thời gian của vận tốc và gia tốc