Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quãng đường vật đi được trong 10 phút: s = vt = 2.5.60 = 600m.
Công của lực F → : A = F.s.cosα = 45.600.0,5 = 13500J
Vì vật chuyển động đều
\(\Rightarrow\overrightarrow{F}+\overrightarrow{N}+\overrightarrow{P}+\overrightarrow{F_{ms}}=\overrightarrow{0}\)
Chọn trục toạ độ có trục hoành hướng sang phải, trục tung hướng lên
\(\Rightarrow\left\{{}\begin{matrix}Ox:F.\cos\alpha-F_{ms}=0\\Oy:F.\sin\alpha+N-P=0\end{matrix}\right.\)
\(\Rightarrow F.\cos\alpha-\mu.\left(P-F.\sin\alpha\right)=0\)
\(\Leftrightarrow120.\cos60-\mu.\left(200-120.\sin60\right)=0\)
=> \(\mu=...\)
Tìm gia tốc trong trường hợp alpha= 300 thì lúc này vật chuyển động biến đổi đều nên có gia tốc, tức là \(\overrightarrow{F}+\overrightarrow{P}+\overrightarrow{N}+\overrightarrow{F_{ms}}=m.\overrightarrow{a}\)
Cậu chiếu lên trục toạ độ rồi phân tích, bt hệ số ma sát rồi thì tìm a ez
v=72=km/h=20m/s
F=40N
Cosa=60°
t=1phút =60s
Giải:s=v×t=20×60=1200m
A=F×s×cosa=40×1200×cos60°=24000J
a) Các lực tác dụng lên vật được biểu diễn như hình vẽ. Chọn hệ trục Ox theo hướng chuyển động, Oy vuông góc phương chuyển động.
Áp dụng định luật II Niu – tơn ta được:
Chiếu hệ thức vecto lên trục Ox ta được:
Fcosα - Fms = ma (1)
Chiếu hệ thức vecto lên trục Oy ta được:
Fsinα - P + N = 0 ⇔ N = P - Fsinα (2)
Mặt khác Fms = μtN = μt(P - Fsinα) (3)
Từ (1) và (2) (3) suy ra:
b) Để vật chuyển động thẳng đều (a = 0) ta có:
⇔ Fcosα - μt(P - Fsinα) ⇒ F = 12(N)
đổi: 10 phút =600s; 7,2km/h=2m/s
quãng đường vật đi được trong 10 phút là
S=V.t=2.600=1200(m)
công của lực \(\overrightarrow{F}\)
A=F.S.\(\cos\alpha\)=40.1200.\(\cos60\)= 24000(J)
giải
đổi 7,2km/h=2,016m/s
10ph=600s
quãng đường mà vật đi được là
\(s=v.t=2,016.600=1209,6\left(m\right)\)
công của lực tác dụng vào vật là
\(A=F.S\cos\alpha=40.1209,6.\cos60^O=24192\left(J\right)\)