Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x=\frac{\left(x+y\right)+\left(x-y\right)}{2};y=\frac{\left(x+y\right)-\left(x-y\right)}{2}\)
Tổng, hiệu của hai số hữu tỉ là một số hữu tỉ . Thương của 1 số hữu tỉ với 1 số hữu tỉ ( khác 0 ) cũng là 1 số hữu tỉ.
Vậy x,y đều là các số hữu tỉ, không thể là số vô tỉ.
b) x và y có thể là số vô tỉ.
Ví dụ : x = \(-\sqrt{2}\); \(y=\sqrt{2}\)\(\Rightarrow x+y=-\sqrt{2}+\sqrt{2}=0\)
\(\Rightarrow\frac{x}{y}=\frac{-\sqrt{2}}{\sqrt{2}}=-1\)
1.
Theo bài ra ta có:
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10
Ta có:
\(\frac{x}{8}=\frac{y}{12},\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Suy ra:
x = 2 . 8 = 16
y = 2 . 12 = 24
z = 2 . 15 = 30
2/
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
Ta có :x = 2k ; y = 5k
=>x . y = 2k . 5k = 10k2 = 10 => k2 = 1 => k = ±1
Thay k = 1 ta có : x = 2 . 1 = 2 ; y = 5 . 1 = 5
Thay k = -1 ta có : x = 2 . (-1) = -2 ; y = 5 . (-1) = -5
Vậy x = ±2 ; y = ±5
3/
Giải:
Gọi số học sinh khối 6,7,8,9 lần lượt là a,b,c,d .
Theo bài ra ta có:
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và b - d = 70
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{b-d}{8-6}=\frac{70}{2}=35\)
Suy ra :
a = 35 . 9 = 315
b = 35 . 8 = 280
c = 35 . 7 = 245
d = 35 . 6 = 210
Vậy số học sinh khối 6,7,8,9 lần lượt là 315;280;245;210 .
bạn à sao dài quá vậy bạn ko biết thì hỏi cô Huyền Hoặc cô Lan ấy
mình thì xỉu cho bạn nên ko làm được hai cô ấy đang thi Violympic đấy mình vô trường Pitago học nữa mình ko còn on nữa đâu nên đừng nhắn gì cho mik nha mệt quá bữa nay có bài toán khó nhưng ko làm được nhưng mik cũng gửi lắm chỉ sợ cô Huyền với cô Lan không thôi
a) Vì x và y là 2 đại lượng tỉ lệ thuận
=> y=kx và x=1/k.y
hay 6=k.2
=> k=3
=>y=3x
=>x=1/3y
b) y=3x
c) khó vẽ lắm
a) Ta có: \(\frac{\left(x+y\right)+\left(x-y\right)}{2}=x\)( x + y và x - y là số hữu tỉ nên \(\frac{\left(x+y\right)+\left(x-y\right)}{2}\)là số hữu tỉ hay x là số hữu tỉ)
\(\frac{\left(x+y\right)-\left(x-y\right)}{2}=y\)( x + y và x - y là số hữu tỉ nên \(\frac{\left(x+y\right)+\left(x-y\right)}{2}\)là số hữu tỉ hay y là số hữu tỉ)
b) x và y có thể là số vô tỉ
VD: \(x=\sqrt{6};y=-\sqrt{6}\)
\(\Rightarrow\hept{\begin{cases}x+y=0\\\frac{x}{y}=-1\end{cases}}\)(đều là số hữu tỉ)
a, \(x=\frac{\left(x+y\right)+\left(x-y\right)}{2}\) ; \(y=\frac{\left(x+y\right)-\left(x-y\right)}{2}\)
tổng, hiệu của 2 số hữu tỉ là một số hữu tỉ. Thương của một số hữu tỉ với một số hữu tỉ khác 0 cùng là một số hữu tỉ.
Vậy x,y đều là các số hữu tỉ không thể là số vô tỉ.
b, x và y có thể là số vô tỉ . Chẳng hạn \(x=-\sqrt{2}\) ; \(y=\sqrt{2}\) thì \(x+y=-\sqrt{2}+\sqrt{2}=0\)
\(\frac{x}{y}=\frac{-\sqrt{2}}{\sqrt{2}}=-1\)