K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

t=1

x=2

15 tháng 8 2018

mình lộn x=3 mới đúng 

25 tháng 4 2017

kết quả là xấp xỉ =722,01

2 tháng 5 2017

1. h(x) = f(x) -g(x) = [2x3 -4x5 +7x2 -(3x-1)] -(-4x5 + 2x3 +7x2-12x+3) = 2x3-4x5 + 7x2 -3x+1 +4x5-2x3-7x2+12x+3 = 9x+4

Vậy h(x) = 9x+4

15 tháng 9 2018

x- 1/5=2x+1/3

x-2x=1/5+1/3

-x= 8/15

=> x= -8/15

15 tháng 9 2018

bn ơi đề câu 2 bn viết x+3/2 rồi nhân hay x đó

13 tháng 6 2018

*) f(1) = 1^100 + 1^99 + ...+ 1 + 1

= 1+ 1 + 1 + ...+ 1 + 1 (101 số 1)

= 101

tương tự:

*) f(-1) = -1 - 1 - 1 ... - 1 - 1 + 1 (100 chữ số 1)

= -100 + 1 = -99

*) đặt f(2) = 2^100 + 2^99 + ...+ 2^2 + 2 + 1 = A

=> 2A = 2^101 + 2^100 + ... + 2^3 + 2^2 + 2

=> 2A - A = 2^101 + 2^100 + ... + 2^3 + 2^2 + 2 - ( 2^100 + 2^99 + ...+ 2^2 + 2 + 1)

<=> A = 2^101 - 1

=> f(2) = 2^101 - 1

tương tự:

*) đặt f(-2) = -2^100 - 2^99 ...- 2^2 - 2 - 1 = B

=> 2B = -2^101 - 2^100 ... - 2^3 - 2^2 - 2

=> 2B -B = -2^101 - 2^100 ... - 2^3 - 2^2 - 2 - ( -2^100 - 2^99 ...- 2^2 - 2 - 1)

<=> B = -2^101 + 1

=> f(-2) = -2^101 + 1

13 tháng 6 2018

g(1) = 1 + 1^3 + 1^5 + ... + 1^101 (51 số 1)

= 51

g(-1) = -1 - 1^3 - 1^5.... - 1^101 (51 số 1)

= -51

đặt g(3) = 3 + 3^3 + 3^5 + ...+ 3^101 = A

=> 3^2 * A = 3^3 + 3^5 + ....+ 3^103

=> 9A - A = 3^3 + 3^5 + ....+ 3^103 - (3 + 3^3 + 3^5 + ...+ 3^101)

=> 8A = -3 + 3^103

=> A = \(\dfrac{3^{103}-3}{8}\)

=> g(3) = \(\dfrac{3^{103}-3}{8}\)

24 tháng 4 2017

5 Câu :V chia ra phần 1 2 câu phần 2 3 câu nhé ;v

Câu 1 : Theo đề ta có : \(\left(x+1\right)^{2014}+\left(y-1\right)^{2016}=0\)

\(\left\{{}\begin{matrix}\left(x+1\right)^{2014}\ge0\forall x\\\left(y-1\right)^{2016}\ge0\forall y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)=0\\\left(y-1\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy GTBT \(3x^7-5y^6+1=3\cdot\left(-1\right)^7-5\cdot1^6+1=-7\)

Câu 2 : Để \(T\left(x\right)=x^{2014}-x=0\)

\(\Leftrightarrow x^{2014}=x\)

\(x^{2014}\ge0\forall x\rightarrow x\ge0\) (vì \(x^{2014}=x\))

Vậy x nhận hai giá trị là x = \(\left(0;1\right)\) thì GTBT T(x) bằng 0.

9 tháng 4 2020

cảm ơn bạn nhiều, bạn làm gần hết bài rồi

9 tháng 4 2020

Không có gì đâu bạn

1: Tìm x

a) Ta có: \(\left(2x-1\right)^3=-27\)

\(\Leftrightarrow2x-1=-3\)

\(\Leftrightarrow2x=-3+1=-2\)

hay x=-1

Vậy: x=-1

b) Ta có: \(\left(2x-3\right)^4=625\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=-5\\2x-3=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5+3=-2\\2x=5+3=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)

Vậy: \(x\in\left\{-1;4\right\}\)

c) Ta có: \(\left(x-2\right)^5=\left(x-2\right)^7\)

\(\Leftrightarrow\left(x-2\right)^5-\left(x-2\right)^7=0\)

\(\Leftrightarrow\left(x-2\right)^5\left[1-\left(x-2\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)^5\cdot\left[1-\left(x-2\right)\right]\cdot\left[1+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)^5\cdot\left(1-x+2\right)\cdot\left(1+x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)^5\cdot\left(-x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^5=0\\-x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\-x=-3\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\x=1\end{matrix}\right.\)

Vậy: \(x\in\left\{1;2;3\right\}\)

d) Ta có: \(5^{x+2}+5^{x+3}=750\)

\(\Leftrightarrow5^{x+2}\cdot1+5^{x+2}\cdot5=750\)

\(\Leftrightarrow5^{x+2}\left(1+5\right)=750\)

\(\Leftrightarrow5^{x+2}\cdot6=750\)

\(\Leftrightarrow5^{x+2}=125\)

\(\Leftrightarrow x+2=3\)

hay x=1

Vậy: x=1