\(\lim\limits_{n\rightarrow-\infty}\left(\sqrt[3]...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

Xet \(m\ne-3\)

\(=\lim\limits_{x\rightarrow-\infty}x\left(\sqrt[3]{1}+\sqrt{4}+m\right)=x\left(3+m\right)\)

\(=\left[{}\begin{matrix}-\infty\left(m>-3\right)\\+\infty\left(m< -3\right)\end{matrix}\right.\)

Xet \(m=-3\)

\(=\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+2x^2+1}-x-2x-\sqrt{4x^2+2x+3}\right)\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^3+2x^2+1-x^3}{\sqrt[3]{\left(x^3+2x^2+1\right)^2}+x\sqrt[3]{x^3+2x^2+1}+x^2}-\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2-4x^2-2x-3}{2x-\sqrt{4x^2+2x+3}}\)

\(=\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{7}{6}\)

AH
Akai Haruma
Giáo viên
4 tháng 4 2021

Bạn bị nhầm số rồi. Xét $m>1; m< 1; m=1$ mới đúng chứ

NV
15 tháng 3 2020

Bài 1:

\(a=\lim\limits_{x\rightarrow-\infty}\frac{2\left|x\right|+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2x+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2+\frac{1}{x}}{3-\frac{1}{x}}=-\frac{2}{3}\)

\(b=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}-\sqrt{4+\frac{2}{x}+\frac{1}{x^2}}}{1+\frac{1}{x}}=\frac{\sqrt{9}-\sqrt{4}}{1}=1\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{2}{x}+\frac{3}{x^2}}+4+\frac{1}{x}}{\sqrt{4+\frac{1}{x^2}}+\frac{2}{x}-1}=\frac{1+4}{\sqrt{4}-1}=5\)

\(d=\lim\limits_{x\rightarrow+\infty}\frac{\frac{3}{x}-\frac{2}{x\sqrt{x}}+\sqrt{1-\frac{5}{x^3}}}{2+\frac{4}{x}-\frac{5}{x^2}}=\frac{1}{2}\)

NV
15 tháng 3 2020

Bài 2:

\(a=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{1}{x}}{1-\frac{1}{x}}=2\)

\(b=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{3}{x^3}}{1-\frac{2}{x}+\frac{1}{x^3}}=2\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{x^2\left(3+\frac{1}{x^2}\right)x\left(5+\frac{3}{x}\right)}{x^3\left(2-\frac{1}{x^3}\right)x\left(1+\frac{4}{x}\right)}=\frac{15}{+\infty}=0\)