Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không gian mẫu là Ω = {1, 2, 3, 4, 5, 6}. Số kết quả có thế có thể có là 6 (hữu hạn); các kết quả đồng khả năng.
Ta có bảng:
b |
1 |
2 |
3 |
4 |
5 |
6 |
∆ = b2 - 8 |
-7 |
-4 |
1 |
8 |
17 |
28 |
a) Phương trình x2 + bx + 2 = 0 có nghiệm khi và chỉ khi ∆ = b2 - 8 ≥ 0 (*). Vì vậy nếu A là biến cố: "Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 có nghiệm"
thì A = {3, 4, 5, 6}, n(A) = 4 và
P(A) = = .
b) Biến cố B: "Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 vô nghiệm" là biến cố A, do đó theo qui tắc cộng xác suất ta có
P(B) = 1 - P(A) = .
c) Nếu C là biến cố: "Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 có nghiệm nguyên" thì C = {3}, vì vậy
P(C) = .
Đáp án D
Phương pháp:
+) Phương trình ax2 + bx + c = 0 có hai nghiệm phân biệt ⇔ ∆ > 0
Cách giải:
Phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt ⇔ ∆ = b 2 - 8 > 0
Vì b là số chấm của con súc sắc nên
Vậy xác suất cần tìm là 4 6 = 2 3
Đáp án D
Phương trình x 2 + b x + 2 = 0 có hai nghiệm phân biệt
⇔ ∆ = b 2 - 8 > 0
⇒ b ∈ 3 ; 4 ; 5 ; 6
Xác suất cần tìm là 4 6 = 2 3
Đáp án A
Phương trình có nghiệm
.
Do m là tổng số chấm sau 2 lần gieo súc sắc nên .
Do đó
Các trường hợp có tổng số chấm thỏa mãn yêu cầu bài toán là
.
Số trường hợp của không gian mẫu là .
Vậy xác suất cần tính là .
Chọn D
Ta có số phần tử của không gian mẫu là n ( Ω ) = 36
Phương trình 1 2 x 2 + 6 x + m = 0 có hai nghiệm phân biệt khi và chỉ khi
Khi đó số chấm trên hai con con súc sắc là cặp số (i;j) với i,j = 1 , 6 ¯ thỏa mãn
Như thế, có tất cả 12 + 5 + 4 + 3 +2 = 26 cặp số (i;j) để i.j = m < 18
Vậy xác suất cần tìm bằng 26 36