Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a/b=c/d=k
=>a=bk ; b=a/k ; c=dk ; d= c/k
Ta có:(a+2c).(b+d)=(bk+2dk).(a/k+c/k)
=k.(b+2d).1/k.(a+c)
=(1/k).k.(b+2d).(a+c)=(a+c)(b+2d) =>đpcm
đặt a/b=c/d=k=>a=bk;c=dk
khi đó:a+b/a-b=bk+b/bk-b=b(k+1)/b(k-1)=k+1/k-1
c+d/c-d=dk+d/dk-d=d(k+1)/d(k-1)=k+1/k-1
=>a+b/a-b=c+d/c-d
xong rồi đó tích đúng cho mk mấy cái đê
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
\(\frac{a+2c}{b+2d}=\frac{kb+2kd}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\)(1)
\(\frac{a-2c}{b-2d}=\frac{kb-2kd}{b-2d}=\frac{k\left(b-2d\right)}{b-2d}=k\)(2)
Từ (1) và (2) => đpcm
Bài làm :
\(\text{Đặt : }\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có :
\(\frac{a+2c}{b+2d}=\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\left(1\right)\)
\(\frac{a-2c}{b-2d}=\frac{bk-2dk}{b-2d}=\frac{k\left(b-2d\right)}{b-2d}=k\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\)
=> Điều phải chứng minh
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow ab\left(c^2+d^2\right)=cd\left(a^2+b^2\right)\)
\(\Leftrightarrow abc^2+abd^2=cda^2+cdb^2\)
\(\Leftrightarrow abc^2+abd^2-cda^2-cdb^2=0\)
\(\Leftrightarrow ac.bc+ad.bd-ac.ad-bc.bd=0\)
\(\Leftrightarrow bc\left(ac-bd\right)-ad\left(ac-bd\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(bc-ad\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}ac=bd\\bc=ad\end{cases}\Leftrightarrow}\orbr{\begin{cases}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\left(dpcm\right)\end{cases}}\)
Ta có \(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=>\(\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}\)
=>\(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(đpcm\right)\)
Ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Vậy khi \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(đpcm\right)\)
Chúc em học tốt nhé!
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\left(đpcm\right)\)
P.s : đánh máy ẩu vậy
Áp dụng t/c của dãy tỉ số bằng nhau ta có \(\frac{\left(a^{2k}+b^{2k}\right)}{c^{2k}+d^{2k}}=\frac{a^{2k}-b^{2k}}{c^{2k}-d^{2k}}=\frac{\left(a^{2k}+b^{2k}\right)+\left(a^{2k}-b^{2k}\right)}{\left(c^{2k}+d^{2k}\right)+\left(c^{2k}-d^{2k}\right)}=\frac{\left(a^{2k}+b^{2k}\right)-\left(a^{2k}-b^{2k}\right)}{\left(c^{2k}+d^{2k}\right)-\left(c^{2k}-d^{2k}\right)}\)
=> \(\frac{a^{2k}}{c^{2k}}=\frac{b^{2k}}{d^{2k}}\) => \(\left(\frac{a}{c}\right)^{2k}=\left(\frac{b}{d}\right)^{2k}\) => \(\frac{a}{c}=\frac{b}{d}\) hoặc \(\frac{a}{c}=-\frac{b}{d}\) ( do số mũ 2k chẵn)
=> \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{a}{b}=-\frac{c}{d}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{b+d}=\frac{a+2c}{b+2d}\Leftrightarrow\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\)