K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

Mình vẽ không có OM vuông góc với OB đượ nha bạn

23 tháng 11 2022

a: Xét (O) có

MB,MC là tiếp tuyến

nên MB=MC

mà OB=OC

nên OMlà trung trực của BC

=>OM vuông góc với BC(1)

b: Xét (O) có

ΔBCI nội tiếp

BI là đường kính

Do đó: ΔBCI vuông tại C

=>CI//OM

c: MK*MO=MB^2=MB*MC

a: Xét tứ giác MBOC có \(\widehat{MBO}+\widehat{MCO}=90^0+90^0=180^0\)

=>MBOC là tứ giác nội tiếp

=>M,B,O,C cùng thuộc một đường tròn

b: Sửa đề: \(CH\cdot HB=OH\cdot HM\)

Xét (O) có

MB,MC là các tiếp tuyến

Do đó: MB=MC

=>M nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra MO là đường trung trực của BC

=>MO\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBM vuông tại B có BH là đường cao

nên \(OH\cdot HM=HB^2\)

=>\(OH\cdot HM=HB\cdot HC\)

29 tháng 12 2021

2: Xét tứ giác MBOC có

\(\widehat{MBO}+\widehat{MCO}=180^0\)

Do đó: MBOC là tứ giác nội tiếp

a: Xét tứ giác MBOC có \(\widehat{OBM}+\widehat{OCM}=90^0+90^0=180^0\)

nên MBOC là tứ giác nội tiếp

=>M,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

MB,MC là các tiếp tuyến

Do đó: MB=MC

=>M nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OM là đường trung trực của BC

=>OM\(\perp\)BC tại I và I là trung điểm của BC

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD tại C

Ta có: BC\(\perp\)CD

BC\(\perp\)OM

Do đó: CD//OM

c: Xét (O) có

ΔBHD nội tiếp

BD là đường kính

Do đó: ΔBHD vuông tại H

=>BH\(\perp\)HD tại H

=>BH\(\perp\)DM tại H

Xét ΔBDM vuông tại B có BH là đường cao

nên \(MH\cdot MD=MB^2\left(3\right)\)

Xét ΔMBO vuông tại B có BI là đường cao

nên \(MI\cdot MO=MB^2\left(4\right)\)

Từ (3) và (4) suy ra \(MH\cdot MD=MI\cdot MO\)

=>\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)

Xét ΔMHI và ΔMOD có

\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)

góc HMI chung

Do đó: ΔMHI đồng dạng với ΔMOD

=>\(\widehat{MIH}=\widehat{MDO}=\widehat{ODH}\)

mà \(\widehat{ODH}=\widehat{OHD}\)(ΔOHD cân tại O)

nên \(\widehat{MIH}=\widehat{OHD}\)

2 tháng 1 2024

Dfg

1 tháng 5 2020

a.Vì MA,MB là tiếp tuyến của (O)

→ˆMAO=ˆMBO=90o→MAO^=MBO^=90o

→M,A,O,B→M,A,O,B thuộc đường tròn đường kình OM

b.Vì MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB=I→MO⊥AB=I

→OA2=OI.OM→OA2=OI.OM

Vì OF⊥CM=EOF⊥CM=E

→ˆFAC=ˆFEC=90o→◊AFCE,◊MAEO→FAC^=FEC^=90o→◊AFCE,◊MAEO nội tiếp

→M,A,E,O,B→M,A,E,O,B cùng thuộc một đường tròn

→ˆFCA=ˆFEA=ˆFBO→FCA^=FEA^=FBO^

→FC→FC là tiếp tuyến của (O)

NV
18 tháng 1 2024

a. Câu này đơn giản em tự giải.

b.

Ta có: \(\left\{{}\begin{matrix}OB=OC=R\\MB=MC\left(\text{t/c hai tiếp tuyến cắt nhau}\right)\end{matrix}\right.\)

\(\Rightarrow OM\) là trung trực của BC

\(\Rightarrow OM\perp BC\) tại H đồng thời H là trung điểm BC hay \(HB=HC\)

\(OC\perp MC\) (MC là tiếp tuyến tại C) \(\Rightarrow\Delta OMC\) vuông tại C

Áp dụng hệ thức lượng trong tam giác vuông OMC với đường cao CH:

\(CH^2=OH.MH\)

c.

C nằm trên đường tròn và AB là đường kính \(\Rightarrow\widehat{ACB}\) là góc nt chắn nửa đường tròn

\(\Rightarrow\widehat{ACB}=90^0\)

Xét hai tam giác MBH và BAC có:

\(\left\{{}\begin{matrix}\widehat{MHB}=\widehat{ACB}=90^0\\\widehat{MBH}=\widehat{BAC}\left(\text{cùng chắn BC}\right)\end{matrix}\right.\)  \(\Rightarrow\Delta MBH\sim\Delta BAC\left(g.g\right)\)

\(\Rightarrow\dfrac{BH}{AC}=\dfrac{MH}{BC}\Rightarrow\dfrac{BH}{AC}=\dfrac{2HF}{2CH}\) (do F là trung điểm MH và H là trung điểm BC)

\(\Rightarrow\dfrac{BH}{AC}=\dfrac{HF}{CH}\)

Xét hai tam giác BHF và ACH có:

\(\left\{{}\begin{matrix}\dfrac{BH}{AC}=\dfrac{HF}{CH}\left(cmt\right)\\\widehat{BHF}=\widehat{ACH}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta BHF\sim\Delta ACH\left(c.g.c\right)\)

\(\Rightarrow\widehat{HBF}=\widehat{CAH}\)

Mà \(\widehat{CAH}=\widehat{CBQ}\) (cùng chắn CQ)

\(\Rightarrow\widehat{HBF}=\widehat{CBQ}\) hay \(\widehat{HBF}=\widehat{HBQ}\)

\(\Rightarrow B,Q,F\) thẳng hàng

NV
18 tháng 1 2024

loading...

29 tháng 12 2021

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO\(\perp\)AB