K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo tính chất hai tiếp tuyến cắt nhau ta có:

    DM = DB, EM = EC, AB = AC

Chu vi ΔADE:

    CΔADE = AD + DE + AE = AD + DM + ME + AE = AD + DB + EC + AE = AB + AC = 2AB (đpcm)

Tl

= 2AB

Hok tốt

19 tháng 3 2020

a) xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=90^0\)(AB , AC tiếp tuyến)

=>\(\widehat{ABO}+\widehat{ACO}=180^0\)

=> tứ giác ABOC nội  tiếp

=> \(\widehat{BOA}=\widehat{ACB}\)( chắn \(\widebat{BA}\))

b) ta có \(\hept{\begin{cases}AB=AC\left(cmt\right)\\OB=OC=R\end{cases}}\)

=> AO là đường trung trực của BC

=> \(AH\perp BC,HB=HC\)

=> \(\Delta IHB=\Delta IHC\left(c.g.c\right)\)

=>\(\widehat{HBI}=\widehat{ICH}=>\widebat{CI}=\widebat{BI}\)

\(=>\widehat{IBA}=\widehat{IBH}\)( chắn CI , BI )

=> IB là tia phân giác của góc ABC 

c)xét tam giác OCA có \(CH\perp CA=>OC^2=OH.OA\)

mà \(OC=OD=>OC^2=OD^2\)

=>\(OD^2=OH.OA\)

19 tháng 3 2020

mình làm lại nha

câu c, d nè :

c) áp dụng hệ thức lượng trong tam giác zuông ABO ta có

\(OH.OA=OB^2=OD^2=>OH.OA=OD^2\Leftrightarrow\)\(\frac{OH}{OD}=\frac{OD}{OA}=>\Delta OHD=\Delta ODA=>\widehat{OAD}=\widehat{ODH}\)

gọi J là  là tâm đường tròn  ngoại tiếp tam giác AHD

khi đó \(\widehat{OAD}=\frac{1}{2}\widehat{DJH}\)

zậy 

\(\widehat{JDO}=\widehat{ODH}+\widehat{JDH}=\frac{1}{2}\widehat{DJH}+\widehat{JDH}=\frac{1}{2}\left(\widehat{DJH}+2\widehat{JDH}\right)=\frac{1}{2}.180^0=90^0\)

=> OD là ....

d) CHỉ ra M, N thuộc trung trực AH

theo cm ở cau C thì \(OD\perp JD\)nên J thuộc tiếp tuyến tại D của (O)

Mặt khác J là tâm đường tròn ngoại tiếp tam giác AHD nên J thuộc trung trực của AC

zậy J là giao điểm của tiếp tuyến tại D của (O) zà đường trung trực AD

=> J trùng E

zậy E là tâm đường tròn ngoại tiếp tam giác AHD nên E thuộc trung trực của AH

mặt khác M , N  đều thuộc trung trực của AH nên M ,E ,N thẳng hàng

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em