K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. cho tam giác ABC nhọn, góc B = 70 độ nội tiếp đường tròn ( 0; 9 cm). Vẽ hai đường cao BM và CN cắt nhau tại H.a. chứng minh tứ giác AMHN , BCMN nội tiếp.b. Tính độ dài cung nhỏ ACc. chứng minh đường thẳng AO vuông góc MN2. từ 1 điểm A nằm ngoài đường tròn ( 0 ; 6 cm) vẽ hai tiếp tuyến AB, AC với đường tròn ( BC thuộc đường tròn tâm O) và cát tuyến AMN của đường tròn tâm O sao cho MN = 6cma....
Đọc tiếp

1. cho tam giác ABC nhọn, góc B = 70 độ nội tiếp đường tròn ( 0; 9 cm). Vẽ hai đường cao BM và CN cắt nhau tại H.

a. chứng minh tứ giác AMHN , BCMN nội tiếp.

b. Tính độ dài cung nhỏ AC

c. chứng minh đường thẳng AO vuông góc MN

2. từ 1 điểm A nằm ngoài đường tròn ( 0 ; 6 cm) vẽ hai tiếp tuyến AB, AC với đường tròn ( BC thuộc đường tròn tâm O) và cát tuyến AMN của đường tròn tâm O sao cho MN = 6cm

a. Chứng minh tứ giác ABOC nội tiếp

b. tính độ dài đoạn thẳng AB biết AO= 10cm

c. Gọi H là trung điểm của đoạn thẳng MN, chứng minh rằng góc AHB = góc AOB

3. từ 1 điểm H nằm ngoài đường tròn tâm O vẽ 2 tiếp tuyến MP, MN ( N, P thuộc đường tròn tâm O) và cát tuyến MAB ( A, B thuộc đường tròn tâm O). Chứng minh tư giác MPON nội tiếp 1 đường

ai giúp mình giải với mình cảm ơn nhiều

0
10 tháng 4 2019

O A C B I M N J

a) Ta có I là trung điểm MN

=> OI vuông MN

Xét tứ giác ABOI có:\(\widehat{ABO}=90^o\)( vì  AB là tiếp tuyến(O; R))

và \(\widehat{AIO}=90^o\)

=> \(\widehat{AIO}+\widehat{ABO}=180^o\)

=> Tứ giác ABOI nội tiếp  (1)

Ta lại có: \(\widehat{ACO}=90^o\)( AC là tiếp tuyến (O;R))

Xét tứ giác ABOC có: \(\widehat{ABO}+\widehat{ACO}=180^o\)

=> Tứ giác ABOC nội tiếp (2)

Như vậy A,B, C, O, I cùng nằm trên môt đường tròn

b) AB=OB  mà AB=AC; OB=OC

=> AB=AC=OB=OC

=> ABOC là hình thoi có \(\widehat{ABO}=90^o\)

=> ABOC là hình vuông

c) Áp dụng định lí piago cho tam giác ABO vuông tại B ta có:

\(AO^2=AB^2+BO^2=R^2+R^2=2R^2\Rightarrow AO=R\sqrt{2}\)

Gọi J là trung điểm AO khi đó các tam giác ABO vuông tại B, ACO vuông tại C đều nhận  AO là cạnh huyền

=> JA=JB=JC=JO

=> J là tâm đường tròn ngoại tiếp ABOC

như vậy bán kính đường tròn ngoại tiếp ABOC bằng \(JA=\frac{1}{2}AO=\frac{R\sqrt{2}}{2}\)

Có bán kính rồi em tính diện tích và chu vi đi nhé!

a: Xét ΔOBA vuông tại B có 

\(\cos\widehat{BOA}=\dfrac{OB}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BOA}=60^0\)

Xét ΔOCA vuông tại C có 

\(\cos\widehat{COA}=\dfrac{OC}{OA}=\dfrac{1}{2}\)

nên \(\widehat{COA}=60^0\)

b: Số đo cung nhỏ BC là 120 độ

Số đo cung lớn BC là 240 độ

a: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

hay A,B,O,C cùng thuộc một đường tròn(1)

Xét tứ giác OIAC có 

\(\widehat{OIA}+\widehat{OCA}=180^0\)

Do đó: OIAC là tứ giác nội tiếp

hay O,I,A,C cùng thuộc một đường tròn(2)

Từ (1) và (2) suy ra A,B,O,I,C cùng thuộc một đường tròn

b: Xét (O) có 

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC
hay A nằm trên đường trung trực của BC(3)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(4)

Từ (3) và (4) suy ra OA⊥BC(5)

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

hay BC⊥CD(6)

Từ (5) và (6) suy ra CD//OA

15 tháng 5 2018

(B,C thuộc đường tròn)