Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tứ giác ABCD có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Hay \(2\widehat{A}+2\widehat{D}=360^o\)
\(\Rightarrow2\left(\widehat{A}+\widehat{D}\right)=360^o\)
\(\Rightarrow\widehat{A}+\widehat{D}=180^o\)
\(\Rightarrow AB//CD\)
Vậy tứ giác ABCD là hình thang. Hình thang này có 2 góc kề 1 đáy bằng nhau nên là hình thang cân.
cho tứ giác abcd có ad=ab=bc và gốc Á+góc C=180.CMR a)tia DB là tia phân giác của góc ADC.b) Tứ giác ABCD là hình thang cân
a, Xet tu giac ABCD co \(\widehat{BAC}+\widehat{BCD}=180° \)→Tu giac ABCD la tu giac noi tiep\(→\hept{\begin{cases}\widehat{CAB}=\widehat{BDC}\\\widehat{ADB}=\widehat{ACB}\end{cases}}\)
Mat khac do AB=BC nen tam giac ABC can suy ra \(\widehat{CAB}=\widehat{ACB}\)
Tu day ta co \(\widehat{BCD}=\widehat{ADB}\)hay DB la phan giac cua \(\widehat{ADC}\)
Gọi giao điểm 2 đường chéo là O
Xét tam giác ABD và tam giác BAC :
góc A = góc B
AD = BC
AB là cạnh chung
=>tam giác ABD = tam giác BAC (c.g.c)
=>AC = BD ( 2 cạnh tương ứng ) (1)
=> góc OAB = góc OBA ( 2 cạnh tương ứng) => góc OAB = góc OBA = \(\frac{180^o-\widehat{AOB}}{2}\)
Xét tam giác ADC và tam giác BCD
AC = BD
AD = BC
DC là cạnh chung
=> tam giác ADC = tam giác BCD (c.c.c)
=> \(\widehat{ODC}=\widehat{OCD}\)
=> \(\hept{\begin{cases}\widehat{ODC}=\widehat{OCD}=\frac{180^o-\widehat{DOC}}{2}\\\widehat{OAB}=\widehat{OBA}=\frac{180^o-\widehat{AOB}}{2}\\\widehat{DOC}=\widehat{AOB}\end{cases}}\)
=> \(\widehat{BAD}=\widehat{ADC}\)
mà 2 góc trên ở vị trí so le trong
=> AB song song với DC (2)
Từ (1) và (2) => ABCD là hình thanh cân (đpcm)
Hình tứ giác ABCD có 2 cạnh đáy là : Ab Và CD
Mà : \(\widehat{A}=\widehat{B};\widehat{C}=\widehat{D}\)
Nên Hình tứ giác alf hình thang cân
Xét\(\Delta ABC\) và \(\Delta ABD\)có :
BC = AD
BAD = ABC (gt)
AB chung
=> \(\Delta ABC=\Delta ABD\)(c.g.c)
=> AC = BD
=> ABD = BAC
=> \(\Delta AOB\) cân tại O
=> AO = OB
Mà AO + OC = AC
BO + OD = BD
AC = BD
=> \(\Delta ODC\) cân tại O
=> ODC = OCD
Xét \(\Delta\)OAB có :
OBA = \(\frac{180-AOB}{2}\)
Xét \(\Delta ODC\)có
ODC =\(\frac{180-DOC}{2}\)
Mà AOB = DOC ( đối đỉnh )
=> OBA = ODC
Mà 2 góc này ở vị trí so le trong
=> AB//CD
Mà AC = BD (cmt)
=> ABCD là hình thang cân