tứ giác ABCD có E,F,G,Htheo thứ tự là trung diểm của các cạnh AB,BC,CD,DA.Chứng mi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

Tham khảo

nối đường chéo AC
Trong ∆ABC ta có
E là trung điểm của AB
F là trung điểm của BC
Nên EF là đường trung bình của ∆ABC
EF//=1/2AC(1)
(Sd tính chất của đng trung bình)
Chứng minh tương tự với ∆ADC
=> HG//=1/2AC(2)
Từ (1) và(2) suy ra EF//=HG
Vậy tứ giác EFGHlaf hình bình hành
Vì có một cặp đối song song và bằng nhau

26 tháng 11 2021

Sd là j z bn

 

3 tháng 9 2017

Tự vẽ hình :)

t/g ABC có :

AE = EB

BF = FC

\(\Rightarrow\)EF - đường trung bình của tam giác ABC

\(\Rightarrow\)\(EF\)//   \(AC\)\(,\)\(EF=\frac{AC}{2}\left(1\right)\)

t/g ADC có :

AH = HD

CG = GD

\(\Rightarrow\)HG - đường trung bình của tam giác ADC

\(\Rightarrow\)\(HG\)//   \(AC\)\(,\)\(HG=\frac{AC}{2}\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Leftrightarrow\)EF // HG , EF = HG

Vì tứ giác EFGH có 2 cạnh đối song song và bằng nhau

\(\Rightarrow\)EFGH - hình bình hành ( đpcm )

3 tháng 9 2017

xem lại đề bài nhé bạn :)

19 tháng 7 2018

Gọi K là trung điểm của AC .

Xét tam giác ADC ta có :

\(AE=DE\)(GT)

\(AK=CK\)(GT)

=> EK là đường trung bình của tam giác ADC

\(\Rightarrow EK=\frac{1}{2}CD\)

Xét tam giác ABC ta có :

\(BF=CF\)(GT)

\(KA=KC\)(GT)

=> KF là đường trung bình của tam giác ABC

+) Xét tam giác EFK ta có :

\(EF\le EK+KF\)

Mà \(EK=\frac{1}{2}CD\)( chứng minh trên )

\(KF=\frac{1}{2}AB\)( chứng minh trên )

\(\Rightarrow EK+KF=\frac{CD}{2}+\frac{AB}{2}\)

\(=\frac{AB+CD}{2}\)

Vậy \(EF\le\frac{AB+CD}{2}\) ( đpcm)

19 tháng 7 2018

A B C D E F K

10 tháng 5 2017

Áp dụng tính chất đường trung bình của tam giác ta chứng minh được:

E H = F G = 1 2 B D   v à   H G = E F = 1 2 A C

Mà AC = BD Þ EH = HG = GF= FE nên EFGH là hình thoi.

a: Xét ΔABC có

E là trung điểm của BC

F là trung điểm của CA
Do đó: EFlà đường trung bình

=>EF//AB và EF=AB/2(1)

Xét ΔABD có

H là trung điểm của DB

G la trung điểm của AD

Do đó: HG là đường trung bình

=>HG//AB và HG=AB/2(2)

Từ (1) và (2) suy ra HG//FE và HG=FE

b: HE=DC/2

EF=AB/2

mà AB=DC

nên HE=FE

Xét tứ giác EFGH có 

EF//GH

EF=GH

Do đó: EFGH là hình bình hành

mà EH=EF

nên EFGH là hình thoi

Sửa đề; EG=FH

Xét ΔABD có

E,H lần lượt là trung điểm của AB,AD

=>EH là đường trung bình

=>EH//BD và EH=BD/2(1)

Xét ΔCBD có

F,G lần lượt là trung điểm của CG,CD

=>FG là đường trung bình

=>FG//BD và FG=BD/2(2)

Từ (1), (2) suy ra EH//FG và EH=FG

Xét tứ giác EHGF có

EH//FG

EH=FG

=>EHGF là hình bình hành

mà EG=FH

nên EHGF là hình chữ nhật

=>EH vuông góc HG

mà EH//BD

nên BD vuông góc HG

mà HG//AC

nên AC vuông góc BD

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)