Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Gọi D là trung điểm BC; E là trung điểm AC
Từ D dựng đường thẳng vuông góc với BC
Từ E dựng đường thẳng vuông góc với AC
Hai đường thẳng trên cắt nhau tại O là tâm đường tròn ngoại tiếp tg ABC (Trong tg 3 đường trung trực đồng quy tại 1 điểm và điểm đó là tâm đường tròn ngoại tiếp tam giác)
Ta có \(AH=2.OD\Rightarrow\frac{OD}{AH}=\frac{1}{2}\) (trong tg khoảng cách từ 1 đỉnh đến trực tâm bằng 2 lần khoảng cách từ tâm đường tròn ngoại tiếp đến cạnh đối diện) (Bạn phải c/m bài toán phụ trên, bạn tự tham khảo trên mạng nhé)
Ta có \(AH\perp BC;OD\perp BC\) => OD // AH
\(\Rightarrow\frac{OG}{HG}=\frac{OD}{AH}=\frac{1}{2}\) (Talet trong tam giác) \(\Rightarrow HG=2.OG\left(dpcm\right)\)
Xin lỗi trên là câu b
Câu a
Nối AD cắt HO tại G đến đoạn cm được \(\frac{OD}{AH}=\frac{1}{2}\) và OD//AH
\(\Rightarrow\frac{GD}{GA}=\frac{OD}{AH}=\frac{1}{2}\) => G là trọng tâm của tg ABC => H, G, O thẳng hàng