Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này ko kẻ hình cũng được.
a) Tứ giác ABCD có:
A^ +B^ + C^ + D^ = 360o
2A^ = 360o - B^ - C^
2A^ = 360o - 130o - 50o
2A^= 180o
A^ = 90o
D^ = A^ = 90o
b) Tam giác vuông ADC có:
AD2 + DC2 = AC2
Tam giác vuông DAB có:
AD2 + AB2= BD2
Cộng vế với vế ta được:
AD2+ DC2 + AD2 + AB2 = AC2 + BD2
AB2 + DC2 + 2AD2 = AC2 + BD2 (đpcm)
câu dưới cùng của đề bài........make color!!
Xin phép
a)\(A=-x^2+6x-5=-x^2+6x-9+4\)
\(=-\left(x^2-6x+9\right)+4=-\left(x-3\right)^2+4\le4\)
Đẳng thức xảy ra khi \(x=3\)
b)\(B=-x^2-3x+4=-x^2-3x-\dfrac{9}{4}+\dfrac{25}{4}\)
\(=-\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{25}{4}=-\left(x+\dfrac{3}{2}\right)^2+\dfrac{25}{4}\ge\dfrac{25}{4}\)
Đẳng thức xảy ra khi \(x=-\dfrac{3}{2}\)
c)\(C=-3x^2+2x-1=-3\left(x^2+\dfrac{2x}{3}+\dfrac{1}{3}\right)\)
\(=-3\left(x^2-\dfrac{2x}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)=-3\left(x^2-\dfrac{2x}{3}+\dfrac{1}{9}\right)-\dfrac{2}{3}\)
\(=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{2}{3}\ge-\dfrac{2}{3}\)
Đẳng thức xảy ra khi \(x=\dfrac{1}{3}\)
d)\(D=ax^2+bx+c=\dfrac{\left(2ax+b\right)^2}{4a}-\dfrac{b^2-4ac}{4a}\le0\)(a<0,abc là hằng số)
Nguyễn Huy TúQuang Duyshin cau be but chiTrần Hoàng Nghĩasoyeon_Tiểubàng giảiMỹ DuyênLê Thiên AnhTrần Quỳnh Maihồ quỳnh anhMới vôTrịnh Ánh Ngọc
a) \(3x^2+12x-66=0\)
Ta có \(\Delta=12^2+4.3.66=936,\sqrt{\Delta}=6\sqrt{26}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-12+6\sqrt{26}}{6}=-2+\sqrt{26}\\x=\frac{-12-6\sqrt{26}}{6}=-2-\sqrt{26}\end{cases}}\)
b) \(9x^2-30x+225=0\)
Ta có \(\Delta=33^2-4.9.225=-7011\)
\(\Delta< 0\)nên pt vô nghiệm
c) \(x^2+3x-10=0\)
Ta có \(\Delta=3^2+4.10=49,\sqrt{\Delta}=7\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-3+7}{2}=2\\x=\frac{-3-7}{2}=-5\end{cases}}\)
d) \(3x^2-7x+1=0\)
Ta có \(\Delta=7^2-4.3.1=37,\sqrt{\Delta}=\sqrt{37}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7+\sqrt{37}}{6}\\x=\frac{7-\sqrt{37}}{6}\end{cases}}\)
a/x +b/y +c/z =0 ->ayz+bxz+cxz=0
x/a + y/b + z/c=1 ->(x/a +y/b +z/c)^2=1
x^2/a^2 + y^2/b^2 + z^2/c^2 +2(xy/ab +yz/bc +xz/ac)=1
x^2/a^2 + y^2/b^2 + z^2/c^2 =1- 2* ayz+bxz+cxz/abc=1-2*0=1-0=1 =>ĐPCM
k hộ mik nha
#)Giải :
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1-2\frac{ayz+bxz+cxy}{abc}=1-2.0=1\left(đpcm\right)\)
#~Will~be~Pens~#
a) x4 + 6x3 + 11x2 + 6x + 1 = 0 <=> ( x2 + 3x + 1 ) 2 = 0 <=> x2 + 3x + 1 = 0
|
a. \(2x^3+3x^2+2x+3=2x\left(x^2+1\right)+3\left(x^2+1\right)=\left(2x+3\right)\left(x^2+1\right)\)
b. \(a^2-ab+a-b=a\left(a+1\right)-b\left(a+1\right)=\left(a-b\right)\left(a+1\right)\)
c. \(2x^2+4x+2-2y^2=2\left(x^2+2x+1-y^2\right)=2\left(x+1+y\right)\left(x+1-y\right)\)
d. \(x^4-2x^3+10x^2-20x=x\left(x^3-2x^2+10x-20\right)\)
\(==x.x\left(x^2+10\right)-2\left(x^2+10\right)=x\left(x-2\right)\left(x^2+10\right)\)
e. \(x^3+2x^2+x=x^2\left(x+1\right)+x\left(x+1\right)=\left(x^2+x\right)\left(x+1\right)\)
f. \(xy+y^2-x-y=x\left(y-1\right)+y\left(y-1\right)=\left(x+y\right)\left(y-1\right)\)
a) 2x3 + 3x2 + 2x + 3
= ( 2x3 + 2x ) + ( 3x2 + 3 )
= 2x( x2 + 1 ) + 3( x2 + 1 )
= ( x2 + 1 )( 2x + 3 )
b) a2 - ab + a - b
= ( a2 + a ) - ( ab + b )
= a( a + 1 ) - b( a + 1 )
= ( a - b )( a + 1 )
c) 2x2 + 4x + 2 - 2y2
= ( 2x2 - 2y2 ) + ( 4x + 2 )
= 2( x2 - y2 ) + 2( 2x + 1 )
= 2( x2 - y2 + 2x + 1 )
= 2[ ( x2 + 2x + 1 ) - y2 ]
= 2[ ( x + 1 )2 - y2 ]
= 2( x - y + 1 )( x + y + 1 )
d) x4 - 2x3 + 10x2 - 20x
= x( x3 - 2x2 + 10x - 20 )
= x[ ( x3 - 2x2 ) + ( 10x - 20 ) ]
= x[ x2( x - 2 ) + 10( x - 2 ) ]
= x( x - 2 )( x2 + 10 )
e) x3 + 2x2 + x = x( x2 + 2x + 1 ) = x( x + 1 )2
f) xy + y2 - x - y
= ( xy - x ) + ( y2 - y )
= x( y - 1 ) + y( y - 1 )
= ( x + y )( y - 1 )
Hướng dẫn cách vẽ hình : Cậu nên vẽ hình thang ABCD cân tại C và D và sao cho góc A và góc D là 2 góc kề 1 bên của tứ giác !!!!( ko bt vẽ trên này
Giải :
Ta có hình thang ABCD có 2 đáy AB và DC
=> AB//DC
Mà M là giao điểm phân giác của 2 góc B và góc D nằm trên AB
=> AM//DC
=> BM//DC
Vì AM//BC
=> AMD = MDC ( 2 góc so le trong ) ( 1)
Mà DM là pg ADC
=> ADM = MDC (2)
Từ (1) và (2) :
=> ADM = AMD
=> Tam giác AMD cân tại A
=> AD = AM(3)
Chứng minh tương tự ta cũng có tam giác MBC cân tại B và suy ra BC = MB(4)
Từ (3) và (4)
=> M là trung điểm AB
Còn ý b) ko bt làm
Sai thông cảm nhé
Vì tứ giác ABCD có:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\\ \Leftrightarrow\left(\widehat{A}+\widehat{B}\right)+50^o+80^o=360^o\\ \Leftrightarrow\widehat{A}+\widehat{B}=230^o\)
Mặt khác: \(\widehat{A}-\widehat{B}=20^o\Rightarrow\widehat{A}=20^o+\widehat{B}\)
\(\Rightarrow\widehat{B}+20^o+\widehat{B}=230^o\\ \Leftrightarrow2\widehat{B}+20^o=230^o\\ \Leftrightarrow2\widehat{B}=210^o\\ \Leftrightarrow\widehat{B}=210^o:2=105^o\\ \Rightarrow\widehat{A}=20^o+105^o=125^o\)
Tổng 4 góc trong tứ giác là 360o
⇒ \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}\)=360o
⇒ \(\widehat{A}+\widehat{B}+\)50o+80o=360o
⇒ \(\widehat{A}+\widehat{B}\)=230o
\(\widehat{A}+\widehat{B}\)=230o, \(\widehat{A}-\widehat{B}\)=20o⇒\(\widehat{A}+\widehat{B}+\widehat{A}-\widehat{B}\)=250o
⇒ \(2\widehat{A}\)=250o
⇒ \(\widehat{A}\)=125o
\(\widehat{A}+\widehat{B}\)=230o
⇒ 125o+\(\widehat{B}\)=230o
⇒\(\widehat{B}\)=105o