\(\widehat{A}+\widehat{C}=180^0\).

CMR:

a) DB l...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

cho tứ giác abcd có ad=ab=bc và gốc Á+góc C=180.CMR a)tia DB là tia phân giác của góc ADC.b) Tứ giác ABCD là hình thang cân

19 tháng 9 2020

a,   Xet tu giac ABCD co \(\widehat{BAC}+\widehat{BCD}=180° \)→Tu giac ABCD la tu giac noi tiep\(→\hept{\begin{cases}\widehat{CAB}=\widehat{BDC}\\\widehat{ADB}=\widehat{ACB}\end{cases}}\)

Mat khac do AB=BC nen tam giac ABC can suy ra    \(\widehat{CAB}=\widehat{ACB}\)

  Tu day ta co  \(\widehat{BCD}=\widehat{ADB}\)hay DB la phan giac cua    \(\widehat{ADC}\)

12 tháng 9 2020

tứ giác ABCD có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

Hay \(2\widehat{A}+2\widehat{D}=360^o\)

        \(\Rightarrow2\left(\widehat{A}+\widehat{D}\right)=360^o\)

\(\Rightarrow\widehat{A}+\widehat{D}=180^o\)

\(\Rightarrow AB//CD\)

Vậy tứ giác ABCD là hình thang. Hình thang này có 2 góc kề 1 đáy bằng nhau nên là hình thang cân.

Xét\(\Delta ABC\) và \(\Delta ABD\)có :

BC = AD 

BAD = ABC (gt)

AB chung

=> \(\Delta ABC=\Delta ABD\)(c.g.c)

=> AC = BD 

=> ABD = BAC 

=> \(\Delta AOB\) cân tại O 

=> AO = OB 

Mà AO + OC = AC

BO + OD = BD

AC = BD

=> \(\Delta ODC\) cân tại O

=> ODC = OCD 

Xét \(\Delta\)OAB có :

OBA = \(\frac{180-AOB}{2}\)

Xét \(\Delta ODC\)có 

ODC =\(\frac{180-DOC}{2}\)

Mà AOB = DOC ( đối đỉnh )

=> OBA = ODC

Mà 2 góc này ở vị trí so le trong 

=> AB//CD

Mà AC = BD (cmt)

=> ABCD là hình thang cân

a: Vì góc A+góc C=180 độ

nên ABCD là tứ giác nội tiếp

Xét đường tròn ngoại tiếp tứ giác ABCD có

góc ABD nội tiếp chắn cung AD

góc BDC là góc nội tiếp chắn cung BC

sđ cung AD=sđ cung BC

Do đó: góc ABD=góc BDC

=>ABCD là hình thang và góc ADB=góc BDC

=>BD là phân giác của góc D

b: Vì ABCD là hình thang

mà ABCD nội tiếp đường tròn

nên ABCD là hình thang cân