Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tứ giác abcd có ad=ab=bc và gốc Á+góc C=180.CMR a)tia DB là tia phân giác của góc ADC.b) Tứ giác ABCD là hình thang cân
a, Xet tu giac ABCD co \(\widehat{BAC}+\widehat{BCD}=180° \)→Tu giac ABCD la tu giac noi tiep\(→\hept{\begin{cases}\widehat{CAB}=\widehat{BDC}\\\widehat{ADB}=\widehat{ACB}\end{cases}}\)
Mat khac do AB=BC nen tam giac ABC can suy ra \(\widehat{CAB}=\widehat{ACB}\)
Tu day ta co \(\widehat{BCD}=\widehat{ADB}\)hay DB la phan giac cua \(\widehat{ADC}\)
tứ giác ABCD có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Hay \(2\widehat{A}+2\widehat{D}=360^o\)
\(\Rightarrow2\left(\widehat{A}+\widehat{D}\right)=360^o\)
\(\Rightarrow\widehat{A}+\widehat{D}=180^o\)
\(\Rightarrow AB//CD\)
Vậy tứ giác ABCD là hình thang. Hình thang này có 2 góc kề 1 đáy bằng nhau nên là hình thang cân.
Xét\(\Delta ABC\) và \(\Delta ABD\)có :
BC = AD
BAD = ABC (gt)
AB chung
=> \(\Delta ABC=\Delta ABD\)(c.g.c)
=> AC = BD
=> ABD = BAC
=> \(\Delta AOB\) cân tại O
=> AO = OB
Mà AO + OC = AC
BO + OD = BD
AC = BD
=> \(\Delta ODC\) cân tại O
=> ODC = OCD
Xét \(\Delta\)OAB có :
OBA = \(\frac{180-AOB}{2}\)
Xét \(\Delta ODC\)có
ODC =\(\frac{180-DOC}{2}\)
Mà AOB = DOC ( đối đỉnh )
=> OBA = ODC
Mà 2 góc này ở vị trí so le trong
=> AB//CD
Mà AC = BD (cmt)
=> ABCD là hình thang cân
a: Vì góc A+góc C=180 độ
nên ABCD là tứ giác nội tiếp
Xét đường tròn ngoại tiếp tứ giác ABCD có
góc ABD nội tiếp chắn cung AD
góc BDC là góc nội tiếp chắn cung BC
sđ cung AD=sđ cung BC
Do đó: góc ABD=góc BDC
=>ABCD là hình thang và góc ADB=góc BDC
=>BD là phân giác của góc D
b: Vì ABCD là hình thang
mà ABCD nội tiếp đường tròn
nên ABCD là hình thang cân