Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kéo dài \(EO\)cắt \(CD\)tại \(F'\).
Ta có: \(AE//CF'\Rightarrow\frac{AE}{CF'}=\frac{OE}{OF'}\)(theo Thalet)
\(EB//DF'\Rightarrow\frac{EB}{DF'}=\frac{OE}{OF'}\)(theo Thalet)
Suy ra \(\frac{EA}{F'C}=\frac{EB}{F'D}\Leftrightarrow\frac{EA}{EB}=\frac{F'C}{F'D}\Rightarrow F'\equiv F\).
Suy ra \(E,O,F\)thẳng hàng.

c: ΔOAE vuông tại A có AF là đường cao
nên EF*EO=EA^2
Xét ΔEAC và ΔEDA có
góc EAC=góc EDA
góc AEC chung
Do đó: ΔEAC đồng dạng với ΔEDA
=>EA/ED=EC/EA
=>EA^2=ED*EC
=>ED*EC=EF*EO

a) Xét ΔDAB có
DO là đường trung tuyến ứng với cạnh AB(O là trung điểm của AO)
DO là đường cao ứng với cạnh AB(gt)
Do đó: ΔDAB cân tại D(Định lí tam giác cân)
Suy ra: \(DA=DB\)(hai cạnh bên)
hay \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)
Xét (O) có
\(\widehat{AID}\) là góc nội tiếp chắn cung AD
\(\widehat{BID}\) là góc nội tiếp chắn cung BD
mà \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)(cmt)
nên \(\widehat{AID}=\widehat{BID}\)
hay ID là tia phân giác của \(\widehat{AIB}\)(đpcm)
b) Xét (O) có
\(\widehat{AIB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{AIB}=90^0\)(Hệ quả góc nội tiếp)
hay \(\widehat{FIB}=90^0\)
Xét tứ giác BIFO có
\(\widehat{FOB}\) và \(\widehat{FIB}\) là hai góc đối
\(\widehat{FOB}+\widehat{FIB}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BIFO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay B,I,F,O cùng thuộc 1 đường tròn(đpcm)