Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: góc DPE = \(\frac{sđED-sđCF}{2}\) ( tính chất góc nằm ngoài đường tròn)
góc CAF = \(\frac{sđCF}{2}\)( tính chất góc nội tiếp đường tròn)
=> góc DPE + góc CAF = \(\frac{sđED-sđCF}{2}\)+\(\frac{sđCF}{2}\)= \(\frac{sđED}{2}\)(*)
mà góc DCE = \(\frac{sđED}{2}\)
thay vào (*). ta được : góc DCE = góc DPE + góc CAF (đpcm)
a: góc DCE=1/2*sđ cung DE
góc DPE=1/2(sđ cung DE-sđ cung CF)
góc CAF=1/2*sđ cug CF)
=>góc DPE=góc DCE-góc CAF
=>góc DPE+góc CAF=góc DCE
b: Xét ΔBAC và ΔBDA có
góc BAC=góc BDA
góc ABC chung
=>ΔBAC đồng dạng với ΔBDA
=>BA/BD=BC/BA
=>BA^2=BD*BC=PB^2
=>BP/BC=BD/BP
=>ΔBPD đồng dạng với ΔBCP
=>góc BPC=góc BDP
=>góc BPC=góc PEF
=>EF//AP
a: góc DCE=1/2*sđ cung DE
góc DPE=1/2(sđ cung DE-sđ cung CF)
góc CAF=1/2*sđ cug CF)
=>góc DPE=góc DCE-góc CAF
=>góc DPE+góc CAF=góc DCE
b,c: Xét ΔBAC và ΔBDA có
góc BAC=góc BDA
góc ABC chung
=>ΔBAC đồng dạng với ΔBDA
=>BA/BD=BC/BA
=>BA^2=BD*BC=PB^2
=>BP/BC=BD/BP
=>ΔBPD đồng dạng với ΔBCP
=>góc BPC=góc BDP
=>góc BPC=góc PEF
=>EF//AP
a: góc DCE=1/2*sđ cung DE
góc DPE=1/2(sđ cung DE-sđ cung CF)
góc CAF=1/2*sđ cug CF)
=>góc DPE=góc DCE-góc CAF
=>góc DPE+góc CAF=góc DCE
b,c: Xét ΔBAC và ΔBDA có
góc BAC=góc BDA
góc ABC chung
=>ΔBAC đồng dạng với ΔBDA
=>BA/BD=BC/BA
=>BA^2=BD*BC=PB^2
=>BP/BC=BD/BP
=>ΔBPD đồng dạng với ΔBCP
=>góc BPC=góc BDP
=>góc BPC=góc PEF
=>EF//AP
Xét ΔBAC và ΔBDA có
góc BAC=góc BDA
góc ABC chung
=>ΔBAC đồng dạng với ΔBDA
=>BA/BD=BC/BA
=>BA^2=BD*BC=PB^2
=>BP/BC=BD/BP
=>ΔBPD đồng dạng với ΔBCP
=>góc BPC=góc BDP
=>góc BPC=góc PEF
=>EF//AP
a: góc DCE=1/2*sđ cung DE
góc DPE=1/2(sđ cung DE-sđ cung CF)
góc CAF=1/2*sđ cug CF)
=>góc DPE=góc DCE-góc CAF
=>góc DPE+góc CAF=góc DCE
b: Xét ΔBAC và ΔBDA có
góc BAC=góc BDA
góc ABC chung
=>ΔBAC đồng dạng với ΔBDA
=>BA/BD=BC/BA
=>BA^2=BD*BC=PB^2
=>BP/BC=BD/BP
=>ΔBPD đồng dạng với ΔBCP
=>góc BPC=góc BDP
=>góc BPC=góc PEF
=>EF//AP
a/ Ta có: \(\widehat{CAF}=\widehat{FDC}\) (vì cùng chắn cung FC nhỏ)
\(\Leftrightarrow\widehat{CAF}+\widehat{DPE}=\widehat{FDC}+\widehat{DPE}\)(1)
\(\Delta DPCcó\): \(\widehat{PDC}+\widehat{DPC}+\widehat{DCP}=180^o\)
\(\Leftrightarrow\widehat{PDC}+\widehat{DPC}=180^o-\widehat{DCP}\) \(mà\) \(\widehat{DCP}+\widehat{DCE}=180^o\Leftrightarrow\widehat{DCE}=180^o-\widehat{DCP}\)
\(\Rightarrow\widehat{DCE}=\widehat{PDC}+\widehat{DPC}\) (2)
từ (1) và (2) ta có : \(\widehat{DCE}=\widehat{CAF̀}+\widehat{DPE}\left(đpcm\right)\)
b/ ta có: PA là tiếp tuyến của đường tròn tâm O tại tiếp điểm A
\(\Rightarrow OA\perp AP\Leftrightarrow\widehat{OAP}=90^o\)
\(\Leftrightarrow\widehat{CAD}+\widehat{CAP}=90^o\) mà \(\widehat{CAP}=\widehat{CDA}\) (vì cùng chắn cung AC nhỏ )
\(\Leftrightarrow\widehat{CAD}+\widehat{CDA}=90^o\) hay \(\widehat{DCA}=90^o\)
áp dụng hệ thức lượng cho tam giác DAB vuông tại A có đường cao AC có:
\(AB^2=BC.BD\left(đpcm\right)\)
Xét ΔPAC và ΔPEA có
góc PAC=góc PEA
góc APC chung
=>ΔPAC đồng dạng với ΔPEA
=>PA/PE=PC/PA
=>PA^2=PE*PC=4*AB^2
Xét ΔBAC và ΔBDA có
góc BAC=góc BDA
góc ABC chung
=>ΔBAC đồng dạng với ΔBDA
=>BA/BD=BC/BA
=>BA^2=BD*BC=PB^2
=>BP/BC=BD/BP
=>ΔBPD đồng dạng với ΔBCP
=>góc BPC=góc BDP
=>góc BPC=góc PEF
=>EF//AP
a: góc DCE=1/2*sđ cung DE
góc DPE=1/2(sđ cung DE-sđ cung CF)
góc CAF=1/2*sđ cug CF)
=>góc DPE=góc DCE-góc CAF
=>góc DPE+góc CAF=góc DCE
b: Xét ΔBAC và ΔBDA có
góc BAC=góc BDA
góc ABC chung
=>ΔBAC đồng dạng với ΔBDA
=>BA/BD=BC/BA
=>BA^2=BD*BC=PB^2
=>BP/BC=BD/BP
=>ΔBPD đồng dạng với ΔBCP
=>góc BPC=góc BDP
=>góc BPC=góc PEF
=>EF//AP