K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho đường tròn (O) điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF).Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO)a, Chứng minh MA. MB = ME.MFb, Gọi H là hình chiêu vuông góc của điểm c lên đuờng thẳng MO. Chứng minh tứ giác AHOB nội tiếpc, Trên nửa mặt phẳng bờ OM có chứa...
Đọc tiếp

Cho đường tròn (O) điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF).Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO)

a, Chứng minh MA. MB = ME.MF

b, Gọi H là hình chiêu vuông góc của điểm c lên đuờng thẳng MO. Chứng minh tứ giác AHOB nội tiếp

c, Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng minh các đường thẳng MSKC vuông góc nhau

d, Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFSABS và T là trung điểm của KS. Chứng minh ba điểm P, Q, T thẳng hàng

1
20 tháng 9 2018

a, HS tự chứng minh

b, MH.MO = MA.MB ( =  M C 2 )

=> ∆MAH:∆MOB (c.g.c)

=>  M H A ^ = M B O ^

M B O ^ + A H O ^ = M H A ^ + A H O ^ = 180 0

=> AHOB nội tiếp

c, M K 2  = ME.MF = M C 2  Þ  MK = MC

∆MKS = ∆MCS (ch-cgv) => SK = SC

=> MS là đường trung trực của KC

=> MS ^ KC tại trung của CK

d, Gọi MS ∩ KC = I

MI.MS = ME.MF =  M C 2  => EISF nội tiếp đường tròn tâm P Þ PI = PS. (1)

MI.MS = MA.MB (=  M C 2 ) => AISB nội tiếp đường tròn tâm Q Þ QI = QS. (2)

Mà IT = TS = TK (do DIKS vuông tại I). (3)

Từ (1), (2) và (3) => P, T, Q thuộc đường trung trực của IS => P, T, Q thẳng hàng

Ta có : MP = MQ (tính chất tiếp tuyến)

=> \(\Delta\) MPQ là tam giác cân

=> ^MPQ = ^MQP

mà ^MQP = ^MIP (2 góc nội tiếp cùng chắng cung MP)

=> ^MPQ = ^MIP => ^MPE = ^MIP

Xét \(\Delta\) MPE và \(\Delta\) MIP ta có :

 M: góc chung

^MPE = ^MIP (cmt)

=> \(\Delta\)MPE đồng dạng \(\Delta\) MIP (g.g)

=> \(\frac{MP}{MI}=\frac{ME}{MB}\)

=> đpcm

29 tháng 5 2018

giúp mk vs ạ mk đang cần gấp

13 tháng 4 2019

IK² = IO² - R² 
IH² = (MH/2)²= (MA²/2MO)² = (MO² - R²)²/(2MO)² 
∆MIK cân <=> IM = IK <=> IH = IK 
<=> (MO² - R²)² = 4MO²(IO² - R²) 
<=> (MO² + R²)² = (2.MO.IO)² 
<=> MO² + R² = 2MO.IO 
<=> R² = MO(2IO - MO) = MO.HO đúng

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

b: Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AMO}=30^0\)

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}=60^0\)

Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

c: Xét (O) có

CA,CP là các tiếp tuyến

Do đó: CA=CP và OC là phân giác của góc AOP

Xét (O) có

DB,DP là các tiếp tuyến

Do đó; DB=DP và OD là phân giác của góc BOP

ΔOAM vuông tại A

=>\(OA^2+AM^2=OM^2\)

=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)

=>\(AM=R\sqrt{3}\)

Chu vi tam giác MCD là:

\(C_{MCD}=MC+CD+MD\)

\(=MC+CP+MD+DP\)

\(=MC+CA+MD+DB\)

=MA+MB=2MA=\(=R\sqrt{3}\cdot2=2R\sqrt{3}\)

d: Ta có: OC là phân giác của góc AOP

=>\(\widehat{AOP}=2\cdot\widehat{COP}\)

Ta có: OD là phân giác của góc BOP

=>\(\widehat{BOP}=2\cdot\widehat{DOP}\)

Xét tứ giác OAMB có

\(\widehat{OAM}+\widehat{OBM}+\widehat{AMB}+\widehat{AOB}=360^0\)

=>\(\widehat{AOB}+60^0+90^0+90^0=360^0\)

=>\(\widehat{AOB}=120^0\)

Ta có: \(\widehat{AOP}+\widehat{BOP}=\widehat{AOB}\)

=>\(2\cdot\left(\widehat{COP}+\widehat{DOP}\right)=120^0\)

=>\(2\cdot\widehat{COD}=60^0\cdot2\)

=>\(\widehat{COD}=60^0\)

12 tháng 1 2024

Thank youuu :3

Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF). Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phiá đối với đường thẳng MO).a) Chứng minh rằng : MA.MB = ME. MFb) Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác AHOB nội tiếp.c) Trên nửa mặt...
Đọc tiếp

Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF). Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phiá đối với đường thẳng MO).
a) Chứng minh rằng : MA.MB = ME. MF
b) Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác AHOB nội tiếp.
c) Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng minh rằng đường thẳng MS vuông góc với đường thẳng KC.
d) Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFS và ABS và T là trung điểm của KS. Chứng minh ba điểm P, Q, T thẳng hàng.

 

0
Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME<MF). Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO).a. Chứng minh rằng MA.MB = ME.MFb. Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác AHOB nội tiếp.c. Trên nửa mặt...
Đọc tiếp

Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME<MF). Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO).

a. Chứng minh rằng MA.MB = ME.MF

b. Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác AHOB nội tiếp.

c. Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng minh rằng đường thẳng MS vuông góc với đường thẳng KC.

d. Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFS và ABS và T là trung điểm của KS. Chứng minh ba điểm P, Q, T thẳng hàng.

0