Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
+ Trong $\Delta ABC$, đường cao $AH$ và $CE$ cắt nhau tại $H$
$\Rightarrow H$ là trực tâm của $\Delta ABC$.
$\Rightarrow BH \perp AC$.
+ Ta có $\widehat{HDB} = 90^{\circ}$ ($AD \perp BC$) và
$\widehat{HEB} = 90^{\circ}$ ($CE \perp AB$)
$\Rightarrow \widehat{HDB} + \widehat{HEB} = 180^{\circ}$.
Mà trong tứ giác $HEBD$, $\widehat{HDB}$ và $\widehat{HEB}$ là hai góc đối nhau.
Suy ra $HEBD$ là tứ giác nội tiếp.
b.
Xét $\Delta MBA$ và $\Delta MAC$ có:
$\widehat{AMC}$ chung
$\widehat{MAB} = \widehat{MCA}$ (cùng chắn cung $AB$)
$\Rightarrow \Delta MBA \sim \Delta MAC$ (g.g)
$\Rightarrow \dfrac{MB}{MA} = \dfrac{MA}{MC}$
$\Rightarrow MA^2 = MB.MC$.
c.
G E
Kẻ đường kính $AG$ và $AD$ cắt đường tròn tại điểm thứ hai là $E$.
Ta có $\widehat{BCE} = \widehat{BAE}$ (cùng chắn cung BE$)
Mà $\widehat{BAE} = \widehat{DCE}$ (cùng phụ với $\widehat{ABC}$)
$\Rightarrow \widehat{BCE} = \widehat{DCE}$
Xét $\Delta CHD$ và $\Delta CED$ có:
$\widehat{BCE} = \widehat{DCE}$
$CD$ chung
$\widehat{CDH} = \widehat{CDE} = 90^{\circ}$
$\Rightarrow \Delta CHD = \Delta CED$ (g.c.g)
$\Rightarrow \widehat{HCD} = \widehat{ECD}$ hay $CD$ vừa là đường cao, vừa là phân giác của $\Delta CHE$.
$\Rightarrow \Delta CHE$ cân tại $C \Rightarrow CD$ là trung trực của đoạn thẳng $HE$.
Suy ra $NH = NE$ (do $N$ thuộc $CD$) (1)
Chứng minh $CBEG$ là hình thang cân
Vì $\widehat{AEG} = 90^{\circ}$ nên $AE \perp GE$
Mà $AE \perp BC$ nên $CB // EG$
Suy ra $CBEG$ là hình thang mà hình thang nội tiếp đường tròn $(O)$ nên $CBEG$ là hình thang cân.
$N$ là trung điểm $BC$ nên $\Delta NCG = \Delta NBE$ (c.g.c)
Suy ra $NE = NG$ (2)
Ta có $\widehat{NFG } = 90^{\circ} \Rightarrow NG>NF$ (3)
Từ (1), (2) và (3) suy ra $NH > NF$.
A B C O E F K I J H M N S T L
c) AT là đường kính của (O), dễ thấy H,K,T thẳng hàng, gọi TH cắt (O) lần nữa tại S, ta được ^ASH = 900
Ta có A,E,H,F,S cùng thuộc đường tròn đường kính AH, suy ra:
(ES,EF) = (AS,AB) = (SC,SB), (SF,SE) = (BS,BC) do đó \(\Delta\)SFE ~ \(\Delta\)SBC
Vì K,L là trung điểm của BC,EF nên \(\Delta\)SFL ~ \(\Delta\)SBK, suy ra \(\Delta\)SFB ~ \(\Delta\)SLK, (KS,KL) = (BS,BA) (1)
Lại có: \(\frac{MF}{MB}=\frac{HF}{HB}=\frac{HE}{HC}=\frac{NE}{NC}\), \(\Delta\)SEC ~ \(\Delta\)SFB, suy ra \(\Delta\)SMN ~ \(\Delta\)SBC
Tương tự như trên, ta thu được (KS,KI) = (BS,BA) (2)
Từ (1);(2) suy ra K,I,L thẳng hàng. Mặt khác K,L,J thẳng hàng vì chúng cách đều E,F.
Do vậy I,J,K thẳng hàng.