Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác KAOB có \(\widehat{KAO}+\widehat{KBO}=90^0+90^0=180^0\)
nên KAOB là tứ giác nội tiếp
2: Xét (O) có
\(\widehat{KAC}\) là góc tạo bởi tiếp tuyến AK và dây cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{KAC}=\widehat{ADC}\)
Xét ΔKAC và ΔKDA có
\(\widehat{KAC}=\widehat{KDA}\)
\(\widehat{AKC}\) chung
Do đó: ΔKAC đồng dạng với ΔKDA
=>\(\dfrac{KA}{KD}=\dfrac{KC}{KA}\)
=>\(KA^2=KC\cdot KD\)
Xét (O) có
KA,KB là các tiếp tuyến
Do đó: KA=KB
=>K nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OK là đường trung trực của AB
=>OK\(\perp\)AB tại M và M là trung điểm của AB
Xét ΔOAK vuông tại A có AM là đường cao
nên \(KM\cdot KO=KA^2\)
=>\(KA^2=KM\cdot KO=KC\cdot KD\)
a) Xét tứ giác KAOB có
\(\widehat{OAK}\) và \(\widehat{OBK}\) là hai góc đối
\(\widehat{OAK}+\widehat{OBK}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: KAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: Xét tứ giác KAOB có
\(\widehat{KAO}+\widehat{KBO}=180^0\)
nên KAOB là tứ giác nội tiếp(1)
Xét tứ giác OMKB có \(\widehat{OMK}+\widehat{OBK}=180^0\)
nên OMKB là tứ giác nội tiếp(2)
Từ (1) và (2) suy ra O,M,A,K,B cùng thuộc đường tròn
b: Xét ΔKAC và ΔKDA có
\(\widehat{KAC}=\widehat{KDA}\)
góc AKC chung
Do đó: ΔKAC\(\sim\)ΔKDA
Suy ra: KA/KD=KC/KA
hay \(KA^2=KC\cdot KD\)