Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tứ giác ABOC có
\(\widehat{ABO}=\widehat{ACO}=90^0\)(tiếp tuyến AB,AC)
=> tứ giác ABOC nội tiếp
b) Xét tam giác ABH zà tam giác AOB có
\(\hept{\begin{cases}\widehat{ABO}chung\\\widehat{BHA}=\widehat{OBA}=90^0\left(BC\perp CA\left(tựCM\right)\right)\end{cases}}\)
=> \(\Delta ABH~\Delta AOB\left(g.g\right)\)
\(=>\frac{AB}{AO}=\frac{AH}{AB}=>AH.AB=AB.AB\left(1\right)\)
xét tam giác ABD zà tam giác AEB có
\(\widehat{BAE}chung\)
\(\widehat{ABD}=\widehat{BEA}\)(cùng chắn \(\widebat{BD}\))
=> \(\Delta ABD~\Delta AEB\left(g.g\right)\)
\(=>\frac{AB}{AE}=\frac{AD}{AB}=>AE.AD=AB.AB\left(2\right)\)
từ 1 zà 2 suy ra
AH.AO=AE.AD(dpcm)
=>\(\Delta ADH~\Delta AOE\)
\(=>\widehat{DEO}=\widehat{DHA}\)(2 góc tương ứng
lại có
\(\widehat{DHA}+\widehat{DHO}=180^0=>\widehat{DEO}+\widehat{DHO}=180^0\)
=> tứ giác DEOH nội tiếp
c) Có tam giá AOM zuông tại O , OB là đường cao
\(=>\frac{1}{OA^2}+\frac{1}{OM^2}=\frac{1}{OB^2}=\frac{1}{R^2}\)
\(\frac{1}{OA.OM}=\frac{1}{OA}.\frac{1}{OM}\le\frac{1}{\frac{OA^2+OM^2}{2}}=\frac{1}{\frac{R^2}{2}}=\frac{1}{2R^2}\left(a,b\le\frac{a^2+b^2}{2}\right)\)
=>\(OA.OM\ge2R^2=>MinS_{AMN}=2R^2\)
dấu = xảy ra khi OA=OM
=> tam giác OAM zuông cận tại O
=> góc A = độ
bài 2
ra kết quả là \(6\pi m^2\)
nếu cần giải bảo mình
chứng minh tam giác CEF đồng dạng với tam giác DNM rồi chứng minh OM = ON
Dễ dàng chứng minh được AO vuông góc BC và BC vuông góc CD => AO // CD
=> góc AME = góc CDE ( 2 góc đồng vị )
lại có góc CDE = góc ACE( góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung CE của đtròn tâm O)
=> góc EMA = góc ECA
=> Tứ giác EMCA nội tiếp
=> góc AEC = góc AMC => góc CEF = góc CMN (1)
=> góc CAM = góc CEM
hay góc CAN = góc CED
lại có góc CED = góc CFD ( 2 góc nội tiếp cùng chắn cung CD của đtròn tâm O)
=> góc CAN = góc CFN
=> Tứ giác CAFN nội tiếp
=> góc CFA = góc CNA hay góc CFE = góc CNM (2)
từ (1) và (2) suy ra tam giác CEF đồng dạng với tam giác
CMN (g-g)
(đpcm)
Vì AO // CD ( cmt) nên MN//CD => tứ giác MNDC là hình thang
=> góc AMC = góc MCD ( cùng phụ với góc CMN) (3)
tứ gics EFDC nội tiếp ( 4 điểm E,F,D,C cùng thuộc đường tròn tâm O )
( góc ở ngoài đỉnh bằng góc ở trong của đỉnh đối
suy ra góc AEC = góc AMC
=> góc AMC = góc CDN (4)
từ (3) và (4) suy ra góc MCD = góc CDN
=> Tứ giác MNDC là hình thang cân
Vì O thuộc đường trung trực của CD ( dễ chứng minh) => O cũng thược đường trung trực của MN => OM=ON (đpcm)
Bài 2:
a: Xét (O) có
CM,CA là tiếp tuyến
nên OC là phân giác của góc MOA(1) và CM=CA
Xet (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
b:
Xét ΔCOD vuông tại O có OM là đường cao
nên MC*MD=OM^2
c: \(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)