K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc với BC

=>OH*OA=OB^2=R^2

b: góc ABM=góc ACM

góc HBM=90 độ-góc OMB=90 độ-góc OBM=góc ABM

=>BM là phân giác của góc ABH

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
6 tháng 5 2021

PiucRYU.png

a) Vì AB,AC là tiếp tuyến của (O) \(\Rightarrow\hept{\begin{cases}AB\perp OB\\AC\perp OC\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{ABO}=90^0\\\widehat{ACO}=90^0\end{cases}}\)

Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=180^0\)

Mà 2 góc này ở vị trí đối nhau trong tứ giác ABOC

\(\Rightarrow ABOC\)nội tiếp ( dhnb )

b) Xét (O) có AB là tiếp tuyến tại B ; MB là dây cung

\(\Rightarrow\widehat{ABM}=\widehat{ANB}\left(=\frac{1}{2}sđ\widebat{MB}\right)\)

Xét tam giác ABM và tam giác ANB có:

\(\hept{\begin{cases}\widehat{BAN}chung\\\widehat{ABM}=\widehat{ANB}\left(cmt\right)\end{cases}\Rightarrow\Delta ABM~\Delta ANB\left(g-g\right)}\)

\(\Rightarrow\frac{AB}{AM}=\frac{AN}{AB}\Rightarrow AB^2=AM.AN\left(1\right)\)

c)  Gọi H là giao điểm của BC và AO 

Xét tam giác ABH và tam giác AOB có:

\(\hept{\begin{cases}\widehat{BAO}chung\\\widehat{AHB}=\widehat{ABO}=90^0\end{cases}}\Rightarrow\Delta ABH~\Delta AOB\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AH}=\frac{AO}{AB}\Rightarrow AB^2=AO.AH\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AM.AN=AH.AO\)

\(\Rightarrow\frac{AM}{AH}=\frac{AO}{AN}\)

Xét tam giác AMH và tam giác AON có:

\(\hept{\begin{cases}\widehat{NAO}chung\\\frac{AM}{AH}=\frac{AO}{AN}\left(cmt\right)\end{cases}\Rightarrow\Delta AMH~\Delta AON\left(c-g-c\right)}\)

\(\Rightarrow\widehat{AHM}=\widehat{ANO}\)

Mà \(\widehat{AHM}+\widehat{MHO}=180^0\)

\(\Rightarrow\widehat{ANO}+\widehat{MHO}=180^0\)

Xét tứ giác MHON có 

\(\widehat{ANO}+\widehat{MHO}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác  MHON

\(\Rightarrow MHON\)nội tiếp ( dhnb ) 

\(\Rightarrow\widehat{NMO}=\widehat{NHO}\left(3\right)\)

Vì H là giao điểm của BC và AO ( h.vẽ )

Mà \(AB,AC\)là tiếp tuyến của (O)

\(\Rightarrow BC\perp OA\)

\(\Rightarrow\widehat{BHO}=90^0\)

Vì NF là tiếp tuyến của (O) tại N

\(\Rightarrow\widehat{ÒNF}=90^0\)

Xét tứ giác FHON có:\(\widehat{FHO}+\widehat{FNO}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác FHON

=> FHON nội tiếp ( dhnb )

\(\Rightarrow\widehat{NHO}=\widehat{NFO}\left(4\right)\)

Từ (3) và (4) \(\Rightarrow\widehat{NMO}=\widehat{NFO}\)

\(\Rightarrow FMON\)nội tiếp (dhnb)

\(\Rightarrow\widehat{FMO}+\widehat{FNO}=180^0\)

\(\Rightarrow\widehat{FMO}=90^0\)

\(\Rightarrow FM\perp OM\)

\(\Rightarrow FM\)là tiếp tuyến của (O) 

d)  Vì E thuộc đường tròn ngoại tiếp tam giác MNO 

\(\Rightarrow E\)thuộc đường tròn đường kính OF

\(\Rightarrow\widehat{OEF}=90^0\)

+) Vì E thuộc đường tròn ngoại tiếp tứ giác ABOC hay E thuộc đường tròn đường kính AO

\(\Rightarrow\widehat{AEO}=90^0\)

\(\Rightarrow\widehat{OEF}+\widehat{AEO}=180^0\)

\(\Rightarrow A,E,F\)thẳng hàng

Lại có vì góc AEO= 90 độ \(\Rightarrow OE\perp AF\left(5\right)\)

Gọi K là trung điểm của MN

\(\Rightarrow OF\perp MN\)

\(\Rightarrow AK\perp OF\)

Xét tam giác AOF có: \(\hept{\begin{cases}AK\perp OF\\FH\perp AO\end{cases}}\)mà AK cắt FH tại P

=> P là trực tâm của tam giác AOF

\(\Rightarrow OP\perp AF\left(6\right)\)

Từ (5) và (6) \(\Rightarrow O,E,P\)thẳng hàng ( đpcm )

2 tháng 6 2018

O A B C H D I K E F

b) Ta thấy (O) giao (I) tại 2 điểm B và D => BD vuông góc OI (tại K) => ^OKB=900.

Xét đường tròn (I) đường kính AB có H thuộc cung AB => AH vuông góc HB hay AH vuông góc BC (1) 

AB và AC là 2 tiếp tuyến của (O) => \(\Delta\)ABC cân tại A. Mà AO là phân giác ^BAC

=> AO vuông góc BC (2)

Từ (1) và (2) => A;H;O thẳng hàng => ^OHB=900.

Xét tứ giác BOHK: ^OKB=^OHB=900 => Tứ giác BOHK nội tiếp đường tròn đường kính OB

=> ^OKH = ^OBH. Lại có ^OBH=^OAB (Cùng phụ ^HBA) => ^OKH = ^OAB

Hay ^OKH = ^HAI. Mà ^OKH + ^KHI = 1800 nên ^HAI + ^KHI = 1800

=> Tứ giác AIKH nội tiếp đường tròn (đpcm).

b) Dễ thấy OI là trung trực của BD và OI cắt BD tại K => K là trung điểm của BD

\(\Delta\)ABC cân đỉnh A có đường phân giác AH => H là trung điểm BC

Từ đó suy ra HK là đường trung bình của \(\Delta\)BDC

=> HK//CD => ^HKD + ^CDK = 1800 (3). Đồng thời \(\frac{HK}{CD}=\frac{1}{2}\)

Tương tự KI là đường trg bình của \(\Delta\)BAD => KI//AD => ^DKI + ^ADK = 1800 (4) Và \(\frac{IK}{AD}=\frac{1}{2}\)

Cộng (3) với (4) => ^KHD + ^KDI + ^CDK + ^ ADK = 3600

<=> ^HKI = 3600 - (^CDK + ^ADK) => ^HKI = ^CDA.

Xét \(\Delta\)HKI và \(\Delta\)CDA: ^HKI=^CDA; \(\frac{HK}{CD}=\frac{IK}{AD}=\frac{1}{2}\)=> \(\Delta\)HKI ~ \(\Delta\)CDA (c.g.c)

=> ^HIK = ^CAD. Mặt khác: ^CAD = ^DBE (Cùng chắn cung DE) => ^HIK=^DBE.

Mà tứ giác AIKH nội tiếp đường tròn => ^HIK=^HAK = >^DBE=^HAK hay ^KBF=^FAK

=> Tứ giác BKFA nội tiếp đường tròn => Đường tròn ngoại tiếp tam giác ABF đi qua điểm K (đpcm).

2 tháng 2 2022

đây là đề học sinh giỏi của tỉnh hải dương năm 2020-2021 ạ