K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2020

câu c nè )\

DO  B nằm trên đường trung trực của MN ( MB=NB ) ( liên hệ cung zà dây)

=> \(\widehat{AMB}=\widehat{NMB}\left(=\frac{1}{2}sđ\widebat{MB}=\frac{1}{2}sđ\widebat{NB}\right)\)nên MB là tia phân giác của góc AMI

=> \(\frac{BA}{BI}=\frac{MA}{MI}\)(t./c tia phân giác )

Mặt khác  \(\Delta ACM~\Delta AMB\Rightarrow\frac{MA}{AC}=\frac{AB}{MA}hay\frac{BA}{MA}=\frac{IB}{MI}\)

nên \(\frac{BA}{MA}.\frac{MA}{AC}=\frac{IB}{MI}.\frac{IB}{MI}=>\frac{AB}{AC}=\frac{IB^2}{MI^2}\)

28 tháng 6 2020

cám ơn ban Thôi! Mệt rồi nhiều nha!

10 tháng 3 2016

c) BMA = MCB ( cùng bằng 1/2sd BM )

  BMI = MCB ( cùng phụ MBC ) 

=>  BMA = BMI => BM là pg của tam giác MAI 

=> \(\frac{AB}{BI}=\frac{MA}{MI}\Leftrightarrow\frac{AB}{MA}=\frac{BI}{MI}\Leftrightarrow\frac{AB^2}{MA^2}=\frac{IB^2}{MI^2}\) (1)

cm AMC đồng dạng tam giác ABM ( góc góc )

=> \(\frac{AM}{AB}=\frac{AC}{AM}\Leftrightarrow AM^2=ABAC\Leftrightarrow\frac{AB}{AM^2}=\frac{1}{AC}\Leftrightarrow\frac{AB^2}{AM^2}=\frac{AB}{AC}\)(2)

Từ (1) và (2) => ĐPCM 

10 tháng 3 2016

c) sử dụng tam giác đồng dạng

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
22 tháng 6 2020

mk chịu