K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

O A T C B H

a) Ta có \(\widehat{BTA}=\widehat{TCB}\)( góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung \(\widebat{TB}\)

\(\Delta ABT\infty\Delta ATC\)(g.g) =>  \(\frac{AT}{AC}=\frac{AB}{AT}\)=> \(AT^2=AB.AC\)(đpcm)

Còn câu b và c có ai giúp mình giải kg

30 tháng 3 2018

b) Do AT là tiếp tuyến của (O) nên AT vuông góc với OT => ^OAT=90

xét tam giác OAT vuông có OH là đường cao nên ta có AT^2=AO.AH (2)

từ câu a) ta có AT^2=AB.AC (1)

Từ (1) và (2) suy ra "ĐPCM"

c) từ kết quả của câu b)=> AB/AO = AH/AC

Xét 2 tam giác ABO và  AHC có ^OAC chung ; AB/AO = AH/AC 

suy ra tam giác ABO đồng dạng tam giác AHC => ^AOB = ^ACH hay ^HOB = ^BCH => OHBC nội tiếp đường tròn

17 tháng 2 2019

b) tia phân giác góc BTC nha mọi người

17 tháng 2 2019

help me 

2 tháng 6 2018

Trường nào ạ?Có thể đăng cả đề ko?