Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : IK = 1/2BC , IL = 1/2AC
=> IK = LP , IL = KN
Mà IK // BC , IL // AC
nên \(\widehat{ILB}=\widehat{C},\widehat{IKA}=\widehat{C}\)(đồng vị)
=> \(\widehat{ILP}=\widehat{IKN}\left(=90^0+\widehat{C}\right)\)
Xét tam giác ILP và tam giác NKI có :
IK = LP (cmt)
IL = KN(cmt)
\(\widehat{ILP}=\widehat{IKN}\)( = 900 + \(\widehat{C}\)) (cmt)
=> tam giác ILP = tam giác NKI(c.g.c)
=> IP = IN(hai cạnh tương ứng)
b) tam giác ILP = tam giác NKI(câu a) nên \(\widehat{IPL}=\widehat{KIN}\)
\(\widehat{KIL}=\widehat{ILB}\)(hai góc so le trong)
Do đó \(\widehat{NIP}=\widehat{NIK}+\widehat{KIL}+\widehat{LIP}=\widehat{LPI}+\widehat{ILB}+\widehat{LIP}=90^0\)
=> \(\widehat{MIN}=\widehat{AIP}\left(=90^0+\widehat{AIN}\right)\)
Xét \(\Delta AIP\) và \(\Delta MIN\) có :
IP = IN (theo câu a)
\(\widehat{MIN}=\widehat{AIP}\left(=90^0+\widehat{AIN}\right)\)
AI = IM
=> \(\Delta AIP=\Delta MIN\left(c.g.c\right)\)
=> MN = AP
c) Gọi giao điểm MN và AP là Q,giao diểm của IN và AP là E
\(\Delta AIP=\Delta MIN\)(câu b) nên \(\widehat{QNE}=\widehat{IPE}\).
\(\widehat{QEN}=\widehat{IEP}\)(đối đỉnh) mà \(\widehat{IEP}+\widehat{IPE}=90^0\)=> \(\widehat{QNE}+\widehat{QEN}=90^0\)=> \(\widehat{EQN}=90^0\)
Vậy AP vuông góc với MN