K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2020

a) Ta có : IK = 1/2BC , IL = 1/2AC

=> IK = LP , IL = KN

Mà IK // BC , IL // AC

nên \(\widehat{ILB}=\widehat{C},\widehat{IKA}=\widehat{C}\)(đồng vị)

=> \(\widehat{ILP}=\widehat{IKN}\left(=90^0+\widehat{C}\right)\)

Xét tam giác ILP và tam giác NKI có :

IK = LP (cmt)

IL = KN(cmt)

\(\widehat{ILP}=\widehat{IKN}\)( = 900 + \(\widehat{C}\)) (cmt)

=> tam giác ILP = tam giác NKI(c.g.c)

=> IP = IN(hai cạnh tương ứng)

b) tam giác ILP = tam giác NKI(câu a) nên \(\widehat{IPL}=\widehat{KIN}\)

\(\widehat{KIL}=\widehat{ILB}\)(hai góc so le trong)

Do đó \(\widehat{NIP}=\widehat{NIK}+\widehat{KIL}+\widehat{LIP}=\widehat{LPI}+\widehat{ILB}+\widehat{LIP}=90^0\)

=> \(\widehat{MIN}=\widehat{AIP}\left(=90^0+\widehat{AIN}\right)\)

Xét \(\Delta AIP\) và \(\Delta MIN\) có : 

IP = IN (theo câu a)

\(\widehat{MIN}=\widehat{AIP}\left(=90^0+\widehat{AIN}\right)\)

AI = IM 

=> \(\Delta AIP=\Delta MIN\left(c.g.c\right)\)

=> MN = AP

c) Gọi giao điểm MN và AP là Q,giao diểm của IN và AP là E

\(\Delta AIP=\Delta MIN\)(câu b) nên \(\widehat{QNE}=\widehat{IPE}\).

 \(\widehat{QEN}=\widehat{IEP}\)(đối đỉnh) mà \(\widehat{IEP}+\widehat{IPE}=90^0\)=> \(\widehat{QNE}+\widehat{QEN}=90^0\)=> \(\widehat{EQN}=90^0\)

Vậy AP vuông góc với MN

19 tháng 7 2020

bài này khó em tài trợ cái hình rồi suy nghĩ lm

A B C I K L N M P

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0